液-液射流搅拌提高热水解污泥混合性能分析

曹秀芹, 丁浩, 蒋竹荷, 袁海光. 液-液射流搅拌提高热水解污泥混合性能分析[J]. 环境工程学报, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
引用本文: 曹秀芹, 丁浩, 蒋竹荷, 袁海光. 液-液射流搅拌提高热水解污泥混合性能分析[J]. 环境工程学报, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
CAO Xiuqin, DING Hao, JIANG Zhuhe, YUAN Haiguang. Analysis of liquid-liquid jet agitation improving mixing performance with thermal-hydrolyzed sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
Citation: CAO Xiuqin, DING Hao, JIANG Zhuhe, YUAN Haiguang. Analysis of liquid-liquid jet agitation improving mixing performance with thermal-hydrolyzed sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194

液-液射流搅拌提高热水解污泥混合性能分析

  • 基金项目:

    北京市教委科技重点项目暨北京市自然科学基金资助项目(KZ201310016017)

    北京建筑大学研究生创新项目资助(PG2017011)

Analysis of liquid-liquid jet agitation improving mixing performance with thermal-hydrolyzed sludge

  • Fund Project:
  • 摘要: 在厌氧消化反应器中,机械搅拌是广为应用的搅拌方式,但机械搅拌在运行过程中存在设备维修困难、能耗高等问题。基于前期的研究,利用Ansys 17.2软件平台,构建3 000 m3液-液射流搅拌厌氧消化反应器1∶1仿真模型,为考察液液射流装置对热水解污泥在反应器内的搅拌混合效果,模拟得出速度云图、速度矢量图、剪切速率图以及死区分布图,并对搅拌性能、搅拌机理进行分析。结果表明:流场区域流速范围0~1.50 m·s-1,剪切速率范围0~200 s-1;依据斯托克斯定律计算出该流场中沉降速度阈值0.30 m·s-1,低于该速度值的部分形成死区,死区主要分布在流场中心区域,其体积为600.88 m3,占总体积20.58%;相对于流场中心区域,流场内其他区域流速均值为0.60 m·s-1,得到较好的搅拌混合。
  • 加载中
  • [1] NAZIROˇLU M, Iˇ B, ZGL C.Recovery of N and P from urine by struvite precipitation followed by combined stripping with digester sludge liquid at full scale[J].Water,2013,5(3):1262-1278
    [2] DONOSO-BRAVO A, MAILIER J, MARTIN C, et al.Model selection, identification and validation in anaerobic digestion: A review[J].Water Research,2011,5(17):5347-5364
    [3] 王刚.国内外污泥处理处置技术现状与发展趋势[J].环境工程, 2013,1(S1):530-533
    [4] 万小春, 董保成, 赵立欣,等.固态物料两相厌氧消化工艺的研究进展[J].中国沼气,2011,9(6):20-23
    [5] WANG A J, LI W W, YU H Q.Advances in biogas technology[M]∥BAI F W,LIU C G,HUANG X,et al.Biotechnology in China III: Biofuels and Bioenergy.Berlin Heidelberg:Springer, 2011:119-141
    [6] POTTS L G A, JOLLY M.Controlling and monitoring anaerobic digesters fed with thermally hydrolysed sludge[J].Water and Environmental Journal,2004,8(2):68-72
    [7] MICALE G,GRISAFI F,RIZZUTI L, et al.CFD simulation of particle suspension height in stirred vessels[J].Chemical Engineering Research and Design,2004,2(9):1204-1213
    [8] COONEY M J, LEWIS K, HARRIS K, et al.Start up performance of biochar packed bed anaerobic digesters[J].Journal of Water Process Engineering,2015,9:7-13
    [9] BLOCKEN B, GUALTIERI C.Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics[J].Environmental Modelling & Software,2012,3(1):1-22
    [10] KARAMA A B, ONYEJEKWE O O, BROUCKAERT C J, et al.The use of computational fluid dynamics (CFD).Technique for evaluating the efficiency of an activated sludge reactor[J].Water Science & Technology,1999,9(10/11):329-332
    [11] HAGUE J, TA C T, BIGGS M J, et al.Small scale model for CFD validation in DAF application[J].Water Science,2001,3(8):167-173
    [12] DANIEL K P, JOEL J D.Modeling of disinfection contactor hydraulics under uncertainty[J].Journal of Environmental Engineerinng,2002,8(11):1056-1067
    [13] LIU J, CRAPPER M, MCCONNACHIE G L.An accurate approach to the design of channel hydraulic flocculators[J].Water Research,2004,8(4):875-886
    [14] KHAN L A, WIVKLEIN E C, TEIXEIRA E C.Validation of a three-dimensional computational fluid dynamics model of a contact tank[J].Journal of Hydraulic Engineering,2006,2(7):741-746
    [15] TERASHIMA M, GOEL R, KOMATSU K, et al.CFD simulation of mixing in anaerobic digesters[J].Bioresource Technology,2009,0(7):2228-2233
    [16] MERONER R N, COLORADO P E.CFD simulation of mechanical draft tube mixing in anaerobic digester tanks[J].Water Research,2009,3(4):1040-50
    [17] WU B.CFD analysis of mechanical mixing in anaerobic digesters[J].Transactions of the ASBAE,2009,2(4):1371-1382
    [18] WU B.CFD simulation of mixing in egg-shaped anaerobic digesters[J].Water Research,2010,4(5):1507-1519
    [19] 陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展,2002,2(1):92-108
    [20] 禹言芳,吴剑华,孟辉波.新型循环射流混合器湍流特性分析[J].过程工程学报,2011,1(1):1-8
    [21] RAHIMI M, PARVAREH A.CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank[J].Computers and Chemical Engineering,2007,1(7):737-744
    [22] 王乐勤,林思达,田艳丽,等.基于CFD的大流量喷嘴喷射性能研究[J].流体机械,2008,6(11):17-22
    [23] 蒋竹荷,曹秀芹,葛芳州,等.基于污泥流变学的射流搅拌混合特性[J].环境工程学报,2016,0(10):5924-5930
    [24] 曹秀芹,王鑫,蒋竹荷,等.高含固污泥在热水解-厌氧消化工艺中的流变特性分析[J].环境工程学报,2017,1(4):2493-2498
    [25] ALEXANDRA M M, MARTINEZ T M, VICENTE F M, et al.Modeling flow inside an anaerobic digester by CFD techniques[J].International Journal of Energy & Environment,2011,2(6):963-974
    [26] VESVIKAR M S, ALDAHHAN M.Flow pattern visualization in a mimic anaerobic digester using CFD[J].Biotechnology and Bioengineering,2005,9(3):719-732
    [27] 熊向峰, 贾丽娟, 宁平,等.射流搅拌提高牛粪中温厌氧发酵产沼气性能[J].农业工程学报,2015,1(19):222-227
  • 加载中
计量
  • 文章访问数:  2190
  • HTML全文浏览数:  1955
  • PDF下载数:  215
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14
曹秀芹, 丁浩, 蒋竹荷, 袁海光. 液-液射流搅拌提高热水解污泥混合性能分析[J]. 环境工程学报, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
引用本文: 曹秀芹, 丁浩, 蒋竹荷, 袁海光. 液-液射流搅拌提高热水解污泥混合性能分析[J]. 环境工程学报, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
CAO Xiuqin, DING Hao, JIANG Zhuhe, YUAN Haiguang. Analysis of liquid-liquid jet agitation improving mixing performance with thermal-hydrolyzed sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194
Citation: CAO Xiuqin, DING Hao, JIANG Zhuhe, YUAN Haiguang. Analysis of liquid-liquid jet agitation improving mixing performance with thermal-hydrolyzed sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 316-323. doi: 10.12030/j.cjee.201706194

液-液射流搅拌提高热水解污泥混合性能分析

  • 1. 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室,北京100044
基金项目:

北京市教委科技重点项目暨北京市自然科学基金资助项目(KZ201310016017)

北京建筑大学研究生创新项目资助(PG2017011)

摘要: 在厌氧消化反应器中,机械搅拌是广为应用的搅拌方式,但机械搅拌在运行过程中存在设备维修困难、能耗高等问题。基于前期的研究,利用Ansys 17.2软件平台,构建3 000 m3液-液射流搅拌厌氧消化反应器1∶1仿真模型,为考察液液射流装置对热水解污泥在反应器内的搅拌混合效果,模拟得出速度云图、速度矢量图、剪切速率图以及死区分布图,并对搅拌性能、搅拌机理进行分析。结果表明:流场区域流速范围0~1.50 m·s-1,剪切速率范围0~200 s-1;依据斯托克斯定律计算出该流场中沉降速度阈值0.30 m·s-1,低于该速度值的部分形成死区,死区主要分布在流场中心区域,其体积为600.88 m3,占总体积20.58%;相对于流场中心区域,流场内其他区域流速均值为0.60 m·s-1,得到较好的搅拌混合。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回