微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析

周营, 朱能武, 刘博文, 张太平. 微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J]. 环境工程学报, 2018, 12(1): 294-303. doi: 10.12030/j.cjee.201703044
引用本文: 周营, 朱能武, 刘博文, 张太平. 微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J]. 环境工程学报, 2018, 12(1): 294-303. doi: 10.12030/j.cjee.201703044
ZHOU Ying, ZHU Nengwu, LIU Bowen, ZHANG Taiping. Effect analysis of compound microbial agents and enhancement on kitchen waste aerobic composting[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 294-303. doi: 10.12030/j.cjee.201703044
Citation: ZHOU Ying, ZHU Nengwu, LIU Bowen, ZHANG Taiping. Effect analysis of compound microbial agents and enhancement on kitchen waste aerobic composting[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 294-303. doi: 10.12030/j.cjee.201703044

微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析

  • 基金项目:

    国家自然科学基金资助项目(31272482)

    教育部新世纪优秀人才支持计划项目(NCET-11-0166)

    广州市产学研协同创新重大专项(201604020055)

Effect analysis of compound microbial agents and enhancement on kitchen waste aerobic composting

  • Fund Project:
  • 摘要: 厨余垃圾中有机组分的降解速率是影响其堆肥过程的重要因素。针对厨余垃圾中脂肪、蛋白质等特异组分设计了微生物菌剂复配方案,筛选了复配的微生物菌剂适宜接种量,并验证了厨余垃圾堆肥的强化效果。结果表明:厨余垃圾堆肥的适宜复配比为m(米曲霉)∶m(地衣芽孢杆菌)∶m(解脂假丝酵母)∶m(绿色木霉)∶m(褐球固氮菌)=1.5∶1.2∶1;且当接种量为6‰时,厨余垃圾中特异性组分脂肪降解率可达76.2%,氮损失率最低为11.8%。同时发现,固氮菌可以减少堆肥过程中氮素的损失,但固氮效果与初始加入固氮菌的量有关,且与菌剂间多种微生物的协作有关,进一步说明了微生物菌剂复配必要性和有效性。
  • 加载中
  • [1] 中华人民共和国国家统计局.中国统计年鉴:2013[M].北京: 中国统计出版社,2013
    [2] 中国环境保护产业协会城市生活垃圾处理专业委员会.城市生活垃圾处理行业2015年发展报告[J].中国环保产业,2016(8):5-10
    [3] 刘红明.生态文明导向的我国工业绿色化发展战略[J].生态经济(学术版),2009(1):321-324
    [4] ZHANG T L T, CHEN Y M, LING W A.Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J].Engineering Geology,2008,97(3/4):97-111
    [5] CLERCQ D D, WEN Z G, FAN F, et al.Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing[J].Renewable & Sustainable Energy Reviews,2016,59:1676-1685
    [6] MARASHLIAN N, EL-FADEL M.The effect of food waste disposers on municipal waste and wastewater management[J].Waste Management & Research,2005,23(1):20-31
    [7] SONG Q, WANG Z, LI J.Environmental performance of municipal solid waste strategies based on LCA method: A case study of Macau[J].Journal of Cleaner Production,2013,57(20):92-100
    [8] SUTHAR S.Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate[J].Ecological Engineering,2009,35(5):914-920
    [9] SEN B, ARAVIND J, KANMANI P, et al.State of the art and future concept of food waste fermentation to bioenergy[J].Renewable & Sustainable Energy Reviews,2016,53:547-557
    [10] PECORINI I, BALDI F, CARNEVALE E A, et al.Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste[J].Waste Management,2016,56:143-150
    [11] 李秀芬, 赵阳, 堵国成, 等.微量金属元素及其配合物对厨余垃圾甲烷发酵的影响[J].环境工程学报,2009,3(3):521-524
    [12] 赵振焕, 金春姬, 张鹏, 等.酵母菌对厨余垃圾厌氧发酵产乙酸的影响[J].环境工程学报,2009,3(10):1885-1888
    [13] PRAMANIK P, GHOSH G K, GHOSAL P K, et al.Changes in organic-C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants[J].Bioresource Technology,2007,98(13):2485-2494
    [14] DEL C V M, FRANCISCA S F, JOS L M, et al.Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes[J].Process Biochemistry,2006,41(6):1438-1443
    [15] VARGAS-GARCA M C, SUREZ-ESTRELLA F, LPEZ M J, et al.Effect of inoculation in composting processes: Modifications in lignocellulosic fraction[J].Waste Management,2007,27(9):1099-1107
    [16] 徐智, 张陇利, 张发宝, 等.堆肥反应器中2种微生物接种剂的堆肥效果研究[J].环境科学,2009,30(11):3409-3413
    [17] NAIR J, OKAMITSU K.Microbial inoculants for small scale composting of putrescible kitchen wastes[J].Waste Management,2010,30(6):977-982
    [18] JURADO M M, SUREZ-ESTRELLA F, LPEZ M J, et al.Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting[J].Bioresource Technology,2015,186:15-24
    [19] 张红玉.厨余垃圾、猪粪和秸秆联合堆肥的腐熟度评价[J].环境工程,2013,31(S1):470-474
    [20] 张锐, 李兵, 樊星,等.水葫芦与厨余垃圾混合好氧堆肥中氮素变化及对腐熟度的影响[J].环境工程学报,2013,7(12):4978-4982
    [21] 李果, 何强, 吴正松,等.厨余垃圾好氧堆肥与污泥厌氧消化一体化处理[J].环境工程学报,2015,9(3):1381-1388
    [22] YUAN J, YANG Q, ZHANG Z, et al.Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting[J].Journal of Environmental Sciences,2015,37(11):83-90
    [23] WANG X, ZHANG W, GU J, et al.Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost[J].Environmental Technology,2016,37(20):2555-2563
    [24] HE Y Q, TAN T W.Use of response surface methodology to optimize culture medium for production of lipase with Candida, sp.99-125[J].Journal of Molecular Catalysis B:Enzymatic,2006,43(1):9-14
    [25] 蒲一涛, 钟毅沪, 周万龙.固氮菌和纤维素分解菌的混合培养及其对生活垃圾降解的影响[J].环境科学与技术,1999(1):15-18
    [26] FOURTI O.The maturity tests during the composting of municipal solid wastes[J].Resources, Conservation and Recycling,2013,72:43-49
    [27] 罗维, 陈同斌.湿度对堆肥理化性质的影响[J].生态学报,2004,24(11):2656-2663
    [28] SOARES M A R, QUINA M M J, QUINTA-FERREIRA R M.Co-composting of eggshell waste in self-heating reactors: Monitoring and end product quality[J].Bioresource Technology,2013,148(11):293-301
    [29] JURADO M M, SUREZ-ESTRELLA F, VARGAS-GARCA M C, et al.Increasing native microbiota in lignocellulosic waste composting: Effects on process efficiency and final product maturity[J].Process Biochemistry,2014,49(11):1958-1969
    [30] 胡菊, 肖湘政, 吕振宇, 等.接种VT菌剂堆肥过程中物理化学变化特征分析[J].农业环境科学学报,2005,24(5):970-974
    [31] NAKASAKI K, NAGASAKI K, ARIGA O.Degradation of fats during thermophilic composting of organic waste[J].Waste Management & Research,2004,22(4):276-282
    [32] LASLO E, GYORGY E, MARA G, et al.Screening of plant growth promoting rhizobacteria as potential microbial inoculants[J].Crop Protection,2012,40(5):43-48
    [33] 刘佳, 李婉, 许修宏, 等.接种纤维素降解菌对牛粪堆肥微生物群落的影响[J].环境科学,2011,32(10):3073-3081
    [34] 席北斗, 刘鸿亮, 孟伟, 等.垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58-60
    [35] 曾苏, 李南华, 盛洪产, 等.微生物除臭剂的筛选、复配及其除臭条件的优化[J].环境科学,2015,36(1):259-265
    [36] 聂文翰, 戚志萍, 冯海玮, 等.复合菌剂秸秆堆肥对土壤碳氮含量和酶活性的影响[J].环境科学,2017,38(2):783-791
    [37] 杨延梅, 杨志峰, 张相锋, 等.底物含氮量对厨余堆肥氮素转化及其损失的影响研究[J].环境科学学报,2007,27(6):993-999
    [38] 石春芝, 蒲一涛, 郑宗坤, 等.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报,2002,8(4):419-421
    [39] 郭新愿, 崔月, 任连海.餐厨废水中解磷菌、固氮菌及解钾菌的互作效应研究[J].环境工程,2017,35(4):36-39
    [40] 席北斗, 刘鸿亮, 黄国和, 等.复合微生物菌剂强化堆肥技术研究[J].环境污染与防治,2003,25(5):262-264
    [41] 徐莹莹, 许修宏, 任广明, 等.接种菌剂对牛粪堆肥反硝化细菌群落的影响[J].农业环境科学学报,2015,34(3):570-577
    [42] 解开治, 徐培智, 张发宝, 等.接种微生物菌剂对猪粪堆肥过程中细菌群落多样性的影响[J].应用生态学报,2009,20(8):2012-2018
  • 加载中
计量
  • 文章访问数:  3150
  • HTML全文浏览数:  2867
  • PDF下载数:  323
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析

  • 1. 华南理工大学环境与能源学院,广州 510006
  • 2. 工业聚集区污染控制与生态修复教育部重点实验室,广州 510006
  • 3. 固体废物处理与资源化广东省环境保护重点实验室,广州 510006
基金项目:

国家自然科学基金资助项目(31272482)

教育部新世纪优秀人才支持计划项目(NCET-11-0166)

广州市产学研协同创新重大专项(201604020055)

摘要: 厨余垃圾中有机组分的降解速率是影响其堆肥过程的重要因素。针对厨余垃圾中脂肪、蛋白质等特异组分设计了微生物菌剂复配方案,筛选了复配的微生物菌剂适宜接种量,并验证了厨余垃圾堆肥的强化效果。结果表明:厨余垃圾堆肥的适宜复配比为m(米曲霉)∶m(地衣芽孢杆菌)∶m(解脂假丝酵母)∶m(绿色木霉)∶m(褐球固氮菌)=1.5∶1.2∶1;且当接种量为6‰时,厨余垃圾中特异性组分脂肪降解率可达76.2%,氮损失率最低为11.8%。同时发现,固氮菌可以减少堆肥过程中氮素的损失,但固氮效果与初始加入固氮菌的量有关,且与菌剂间多种微生物的协作有关,进一步说明了微生物菌剂复配必要性和有效性。

English Abstract

参考文献 (42)

目录

/

返回文章
返回