高蛋白含量餐厨垃圾水解真菌的筛选和应用

郝杰威, 何再华, 周长芳, 田兴军. 高蛋白含量餐厨垃圾水解真菌的筛选和应用[J]. 环境工程学报, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
引用本文: 郝杰威, 何再华, 周长芳, 田兴军. 高蛋白含量餐厨垃圾水解真菌的筛选和应用[J]. 环境工程学报, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
HAO Jiewei, HE Zaihua, ZHOU Changfang, TIAN Xingjun. Screening and application of fungi on hydrolysis of high-concentrated protein food waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
Citation: HAO Jiewei, HE Zaihua, ZHOU Changfang, TIAN Xingjun. Screening and application of fungi on hydrolysis of high-concentrated protein food waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054

高蛋白含量餐厨垃圾水解真菌的筛选和应用

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07204004-003)

    教育部博士点基金项目(20110091110018)

Screening and application of fungi on hydrolysis of high-concentrated protein food waste

  • Fund Project:
  • 摘要: 从足癣患者病灶部位分离及筛选出12株真菌,其中4株真菌在蛋白质培养基和淀粉水解培养基菌落水解圈 直径与菌落直径比(D/d) 表现突出。经ITS-5.8S rDNA鉴定分别为Tritirachium oryzae,Paecilomyces sp.,Aspergillus puniceus,Septoriella oudemansii。优化4株真菌的最适发酵温度,并选出优良菌株用于高蛋白含量餐厨垃圾(A)降解。液体发酵结果表明,温度和菌株对游离氨基氮和还原糖产量有显著影响,47 ℃为最适发酵温度,并且Aspergillus puniceus、Septoriella oudemansii显著优于其他真菌。因此,分别接种Aspergillus puniceus,Septoriella oudemansii以及Aspergillus puniceus和Septoriella oudemansii复合菌株到餐厨垃圾(B),预先进行固态发酵,5 d后进行液态发酵。24 h后发酵液中还原糖的浓度达到最大值,分别为12 080、9 832和13 123 mg·L-1,发酵108 h后游离氨基氮浓度达到最大值,分别为3 660、2 821和3 375 mg·L-1。研究表明,Aspergillus puniceus和Septoriella oudemansii复合菌株对还原糖产量有一定的促进作用,但是不利于游离氨基氮的产生。Aspergillus puniceus为最佳菌种,可以应用于高蛋白含量餐厨垃圾的生物降解和高附加值产品的开发等相关方面的研究。
  • 加载中
  • [1] LIN S K, KOUTINAS A A, STAMATELATOU K, et al.Current and future trends in food waste valorization for the production of chemicals, materials and fuels: A global perspective[J].Biofuels Bioproducts & Biorefining,2015,8(5):686-715
    [2] 中国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2014
    [3] MIHYUNG K, JUNGWK K.Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery[J].Science of the Total Environment,2010,408(19):3998-4006
    [4] KWON S, BEDNAR C, KWON J, et al.An investigation of college and university food service administrators’ perceptions of food waste reduction activities and food waste disposal methods[J].Journal of the American Dietetic Association,2010,110(S):1-67
    [5] SUGIURA K, YAMATANI S, WATAHARA M, et al.Ecofeed, animal feed produced from recycled food waste[J].Veterinaria Italiana,2009,45(3):397-404
    [6] KWAN T H, LIN C S K, CHAN K M.Application of food waste valorization technology in Hong Kong[M]∥LIN C S K, LUQUE R.Renewable Resources for Biorefineries.UK,Royal Society of Chemistry, 2014:93-116
    [7] PLEISSNER D, QI Q S, GAO C J, et al.Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy[J].Biochemical Engineering Journal,2016,116:3-16
    [8] PLEISSNER D, KWAN T H, LIN C S K.Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation[J].Bioresource Technology,2014,158(2):48-54
    [9] LAM W C, PLEISSNER D, LIN C S.Production of fungal glucoamylase for glucose production from food waste[J].Biomolecules,2013,3(3):788-794
    [10] BO J, YIN P H, MA Y H, et al.Production of lactic acid and fungal biomass by rhizopus, fungi from food processing waste streams[J].Journal of Industrial Microbiology & Biotechnology,2005,32(11/12):678-686
    [11] WANG Q H, WANG X Q, WANG X M, et al.Glucoamylase production from food waste by Aspergillus niger, under submerged fermentation[J].Process Biochemistry,2008,43(3):280-286
    [12] LEUNG C, CHEUNG S, ZHANG Y Z, et al.Utilisation of waste bread for fermentative succinic acid production[J].Biochemical Engineering Journal,2012,65(25):10-15
    [13] ZHANG Y Z, ZHENG S, CHOCHARKJOE L, et al.Valorisation of bakery waste for succinic acid production[J].Green Chemistry,2013,15(3):690-695
    [14] PLEISSNER D, WAN C L, SUN Z, et al.Food waste as nutrient source in heterotrophic microalgae cultivation[J].Bioresource Technology,2013,137(6):139-146
    [15] PLEISSNER D, WAN C L, HAN W, et al.Fermentative polyhydroxybutyrate production from a novel feedstock derived from bakery waste[J].Biomed Research International,2014,2014(2):1-8
    [16] SAYEKI M, KITAGAWA T, MATSUMOTO M, et al.Chemical composition and energy value of dried meal from food waste as feedstuff in swine and cattle[J].Nihon Chikusan Gakkaiho,2001,72(7):34-40
    [17] PLEISSNER D, LIN C S K.Valorisation of food waste in biotechnological processes[J].Sustainable Chemical Processes,2013,1(1):1-6
    [18] KWAN T H, HU Y, LIN C S.Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota[J].Bioresource Technology,2016,217:129-136
    [19] 张颖, 罗庆录.皮肤癣菌外分泌角蛋白的研究进展[J].中国真菌学杂志,2007,2(3):190-193
    [20] 胡婵, 朱红梅, 谭宏月,等.不同蛋白培养基对红色毛癣菌生长形态的影响[J].中国真菌学杂志,2014,9(3):139-142
    [21] DUBOIS M, GILLES K, HAMILTON J K, et al.A colorimetric method for the determination of sugars[J].Nature,1951,168(4265):167
    [22] 赵凯,许鹏举,谷广烨.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008,29(8):534-536
    [23] 郑旴,陈泽斌,夏体渊,等.餐厨垃圾好氧降解菌的筛选鉴定[J].西南农业学报,2016,29(2):420-424
    [24] 于鑫,邵晨,田兴军.餐厨降解菌的生物特性研究[J].环境科学学报,2014,34(7):1781-1787
    [25] KOUTINAS A, BELAFIBAKO K, KABIRIBADR A, et al.Enzymatic hydrolysis of polysaccharides: Hydrolysis of starch by an enzyme complex from fermentation by Aspergillus awamori[J].Food & Bioproducts Processing,2001,79(1):41-45
    [26] WANG R, LAW R C S, WEBB C.Protease production and conidiation by Aspergillus oryzae, in flour fermentation[J].Process Biochemistry,2005,40(1):217-227
    [27] MERRILL A L, WATT B K.Energy Value of Foods, Basis and Derivation[M].Washington, DC:Unites States Department of Agriculture,1955
    [28] 王有智, 郭芳,周宇光.一个有丝分裂孢子真菌中国新记录:稻麦穗孢[J].菌物系统,2002,21(4):607-608
    [29] NASERI A, FATA A, NAJAFZADEH M J.First case of Tritirachium oryzae as agent of onychomycosis and its susceptibility to antifungal drugs[J].Mycopathologia,2013,176(1/2):119-122
    [30] MORAES R N R, RIBEIRO M C T, NOGUEIRA M C L, et al.First report of Tritirachium oryzae infection of human scalp[J].Mycopathologia,2010,169(4):257-259
    [31] MORGENSTERN I, POWLOWSKI J, ISHMAEL N, et al.A molecular phylogeny of thermophilic fungi[J].Fungal Biology,2012,116(4):489-502
    [32] NAKASAKI K, MIMOTO H, TRAN Q N, et al.Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp.FA13[J].Bioresource Technology,2015,180:40-46
    [33] SAFIKA, MADAYANTI F, ADITIAWATI P, et al.Succession of eukaryotic community microorganism from cattle manure during composting process[J].Journal of Pure & Applied Microbiology,2013,7(3):2233-2241
    [34] CROUS P W, SHIVAS R G, QUAEDVLIEG W, et al.Fungal planet description sheets:214-280[J].Persoonia,2014,32:184-306
    [35] 朱晓秀, 郝杰威, 何再华,等.接种顺序和固含率对餐厨垃圾真菌水解效果的影响[J].环境工程学报,2017,11(3):1795-1800
    [36] CLAASSEN P A, BUDDE M A, LPEZ-CONTRERAS A M.Acetone, butanol and ethanol production from domestic organic waste by Solventogenic clostridia[J].Journal of Molecular Microbiology & Biotechnology,2000,2(1):39-44
  • 加载中
计量
  • 文章访问数:  2583
  • HTML全文浏览数:  2314
  • PDF下载数:  290
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14
郝杰威, 何再华, 周长芳, 田兴军. 高蛋白含量餐厨垃圾水解真菌的筛选和应用[J]. 环境工程学报, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
引用本文: 郝杰威, 何再华, 周长芳, 田兴军. 高蛋白含量餐厨垃圾水解真菌的筛选和应用[J]. 环境工程学报, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
HAO Jiewei, HE Zaihua, ZHOU Changfang, TIAN Xingjun. Screening and application of fungi on hydrolysis of high-concentrated protein food waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054
Citation: HAO Jiewei, HE Zaihua, ZHOU Changfang, TIAN Xingjun. Screening and application of fungi on hydrolysis of high-concentrated protein food waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 286-293. doi: 10.12030/j.cjee.201703054

高蛋白含量餐厨垃圾水解真菌的筛选和应用

  • 1. 南京大学生命科学学院,南京 210046
  • 2. 南京恩皆优生物科技有限公司,南京210046
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07204004-003)

教育部博士点基金项目(20110091110018)

摘要: 从足癣患者病灶部位分离及筛选出12株真菌,其中4株真菌在蛋白质培养基和淀粉水解培养基菌落水解圈 直径与菌落直径比(D/d) 表现突出。经ITS-5.8S rDNA鉴定分别为Tritirachium oryzae,Paecilomyces sp.,Aspergillus puniceus,Septoriella oudemansii。优化4株真菌的最适发酵温度,并选出优良菌株用于高蛋白含量餐厨垃圾(A)降解。液体发酵结果表明,温度和菌株对游离氨基氮和还原糖产量有显著影响,47 ℃为最适发酵温度,并且Aspergillus puniceus、Septoriella oudemansii显著优于其他真菌。因此,分别接种Aspergillus puniceus,Septoriella oudemansii以及Aspergillus puniceus和Septoriella oudemansii复合菌株到餐厨垃圾(B),预先进行固态发酵,5 d后进行液态发酵。24 h后发酵液中还原糖的浓度达到最大值,分别为12 080、9 832和13 123 mg·L-1,发酵108 h后游离氨基氮浓度达到最大值,分别为3 660、2 821和3 375 mg·L-1。研究表明,Aspergillus puniceus和Septoriella oudemansii复合菌株对还原糖产量有一定的促进作用,但是不利于游离氨基氮的产生。Aspergillus puniceus为最佳菌种,可以应用于高蛋白含量餐厨垃圾的生物降解和高附加值产品的开发等相关方面的研究。

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回