共存离子对EK/PRB联合修复砷污染土壤的影响

纪冬丽, 张竞, 孟凡生, 王业耀. 共存离子对EK/PRB联合修复砷污染土壤的影响[J]. 环境工程学报, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
引用本文: 纪冬丽, 张竞, 孟凡生, 王业耀. 共存离子对EK/PRB联合修复砷污染土壤的影响[J]. 环境工程学报, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
JI Dongli, ZHANG Jing, MENG Fansheng, WANG Yeyao. Interference of coexistence ions on arsenic removal from soil by electrokinetic process coupled with permeable reaction barrier[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
Citation: JI Dongli, ZHANG Jing, MENG Fansheng, WANG Yeyao. Interference of coexistence ions on arsenic removal from soil by electrokinetic process coupled with permeable reaction barrier[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133

共存离子对EK/PRB联合修复砷污染土壤的影响

  • 基金项目:

    国家自然科学基金资助项目(51308520)

Interference of coexistence ions on arsenic removal from soil by electrokinetic process coupled with permeable reaction barrier

  • Fund Project:
  • 摘要: 以砷含量为500 mg·kg-1的模拟土壤为研究对象,采用电动/渗透性反应格栅(EK/PRB)联合技术对土壤中的砷进行去除。研究土壤共存离子Fe3+、Ca2+、Al3+、HCO-3、NO-3和PO3-4等的影响下电流密度、土壤pH分布、砷残余量的变化,重点研究土壤中不同形态砷之间的迁移转化规律。结果表明:添加共存离子后,土壤砷残余量增加,去除效率降低,由68%降低到41%;土壤电流密度变化幅度增加,由3 mA·cm-2在24 h后升高到9.5 mA·cm-2,然后在12 h内迅速下降,最后稳定在0.6 mA·cm-2;pH变化幅度增加,变化趋势未发生变化,均是靠近阴极侧呈碱性,靠近阳极侧呈酸性;土壤中砷残渣态由11.98%升高到39.81%,残渣态的升高是土壤中砷去除率降低的原因。
  • 加载中
  • [1] 赵婉雨, 杨雨寒.土壤重金属污染修复技术分析[J].高科技与产业化,2015,1(9):64-69
    [2] 纪冬丽, 孟凡生, 薛浩,等.国内外土壤砷污染及其修复技术现状与展望[J].环境工程技术学报,2016,6(1):90-99
    [3] 纪冬丽.电动-渗透性反应格栅联合修复砷污染土壤效能与机理研究[D].北京:中国地质大学(北京), 2016
    [4] 薛浩, 孟凡生, 王业耀,等.酸化-电动强化修复铬渣场地污染土壤[J].环境科学研究,2015,8(8):1317-1323
    [5] 孟凡生, 王业耀.电动修复铬污染土壤的实验研究[J].环境科学与技术,2005,8(4):27-29
    [6] 孟凡生, 王业耀.渗透反应格栅修复铬污染地下水的试验研究[J].地下水,2007,9(4):96-99
    [7] 于天仁.对国外土壤化学发展的一些看法[J].土壤,1987,9(4):3-10
    [8] MUHAMMAD, CHOONG T S Y, CHUAH T G, et al.Adsorption of β-carotene onto mesoporous carbon coated monolith in isopropyl alcohol and n-hexane solution: Equilibrium and thermodynamic study[J].Chemical Engineering Journal,2010,4(1):178-182
    [9] LADEIRA M M,RODRIGUEZ N M,GONALVES L C,et al.Cinética ruminal do feno de stylosanthes guianensis[J].Arquivo Brasileiro De Medicina Veterinária E Zootecnia,2001,3(2):1-8
    [10] 黄爽兵,EMILIE E,王焰新.高砷含水层沉积物矿物学特征及砷的活化[J].矿物岩石,2012,2(4):7-11
    [11] KIM M J,NRIAGU J, HAACK S.Carbonate ions and arsenic dissolution by groundwater[J].Environmental Science and Technology,2000,4(15):3094-3100
    [12] 韩娟娟,孟凡生,王业耀,等.电动修复硝酸盐污染高岭土的影响因素[J].环境工程技术学报,2014,4(4):269-274
    [13] 纪冬丽, 孟凡生, 王业耀,等.废铁屑吸附水中As(Ⅲ)试验研究[J].环境工程, 2016,9(s1):66-71
    [14] 冯素萍,刘慎坦,杜伟,等.利用BCR改进法和Tessier修正法提取不同类型土壤中Cu、Zn、Fe、Mn的对比研究[J].分析测试学报,2009,8(3):297-300
    [15] CAMESELLE C.Electrokinetic remediation and other physico-chemical remediation techniques for in situ, treatment of soil from contaminated nuclear and NORM sites[J].Environmental Remediation and Restoration of Contaminated Nuclear and Norm Sites,2015,2(1):161-184
    [16] 任杰.电动修复铬污染土壤过程中能耗分配研究[D].兰州:兰州大学,2015
    [17] LI D, TAN X Y, WU X D, et al.Effects of electrolyte characteristics on soil conductivity and current in electrokinetic remediation of lead-contaminated soil[J].Separation & Purification Technology,2014,5:14-21
    [18] BAEK K, KIM D H, PARK S W, et al.Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing[J].Journal of Hazardous Materials,2009,1(1):457-462
    [19] 郑雅杰,赵攀峰,王勇,等.高电流密度电解对阴极铜质量的影响[J].中南大学学报(自然科学版),2009,0(2):311-316
    [20] ISOSAARI P, SILLANP M.Electromigration of arsenic and co-existing metals in mine tailings[J].Chemosphere,2010,1(9):1155-1158
    [21] YUAN C, CHIANG T S.The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier[J].Chemosphere,2007,7(8):1533-1542
    [22] ACAR Y B,ALSHAWABKEH A N.Principles of electrokinetic remediation[J].Environmental Science and Technology,1993,7(13):2638-2647
    [23] ZHOU D M,DENG C F,CANG L.Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents[J].Chemosphere,2004,6(3):265-273
    [24] YUAN C, LIEN H L.Removal of arsenate from aqueous solution using nanoscale iron particles[J].Water Quality Research Journal of Canada,2006,1(2):210-215
    [25] YUAN C, WENG C H.Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process[J].Chemosphere,2004,7(3):225-232
    [26] ZENG L.A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal[J].Water Research,2003,7(18):4351-4358
    [27] GHIMIRE K.Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste[J].Water Research,2003,7(20):4945-4953
    [28] 张敏.化学添加剂对土壤砷生物有效性调控的效果和初步机理研究[D].武汉:华中农业大学,2009
    [29] 胡珊.共存离子对砷在纳米二氧化钛上吸附影响的微观机制研究[D].北京:中国科学院大学, 2015
  • 期刊类型引用(9)

    1. 王年禧,霍慧敏,何艺,郑洋,刘研萍,韦洪莲. 化工废盐产生和处理技术研究进展及启示. 环境工程学报. 2024(11): 3149-3156 . 本站查看
    2. 孙越,张聪慧,白皓,刘鑫,刘思卓. 混凝-异相Fenton工艺处理渗沥液纳滤浓缩液研究. 中国环境科学. 2023(03): 1197-1207 . 百度学术
    3. 肖芳,廖晓伟,范锐,廖铁,李云龙,曹亮. 天然气净化厂高盐环胺废液处理工艺研究. 天然气与石油. 2023(04): 99-106 . 百度学术
    4. 刘宇程,杨冰,李沁蔓,马丽丽,李玲丽,陈明燕. Cl~-和pH对高级氧化工艺去除含盐废水中有机物的影响及机理. 环境工程学报. 2021(05): 1487-1499 . 本站查看
    5. 胡军,员建,宋亚梦. 高级氧化联合处理工艺对高盐难降解有机废水的处理. 天津城建大学学报. 2021(06): 407-411 . 百度学术
    6. 曹美玲,李海,刘佛财,李丹,钟常明. 高盐有机废水的处理与研究进展. 有色金属科学与工程. 2019(03): 92-98 . 百度学术
    7. 蒋立先. Fenton—活性炭联合处理酸性高盐有机化工废水. 中国给水排水. 2019(10): 111-114 . 百度学术
    8. 李俊虎,周珉,王乔,陈春玥. 高盐废水处理工艺最新研究进展. 环境科技. 2018(04): 74-78 . 百度学术
    9. 姜继平,李玉立,王鹏,王宝玉. 水厂低温低浊排泥水混凝处理工艺设计优化. 净水技术. 2018(08): 61-65 . 百度学术

    其他类型引用(10)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.8 %DOWNLOAD: 3.8 %FULLTEXT: 86.0 %FULLTEXT: 86.0 %META: 10.2 %META: 10.2 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 91.9 %其他: 91.9 %Ashburn: 1.3 %Ashburn: 1.3 %Beijing: 0.8 %Beijing: 0.8 %Guangzhou Shi: 0.2 %Guangzhou Shi: 0.2 %Hangzhou: 0.2 %Hangzhou: 0.2 %Kunshan: 0.2 %Kunshan: 0.2 %Montreal: 0.2 %Montreal: 0.2 %Nanjing: 0.2 %Nanjing: 0.2 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Xingfeng: 0.5 %Xingfeng: 0.5 %XX: 3.2 %XX: 3.2 %Yuncheng: 0.2 %Yuncheng: 0.2 %北京: 0.2 %北京: 0.2 %大连: 0.2 %大连: 0.2 %杭州: 0.2 %杭州: 0.2 %深圳: 0.5 %深圳: 0.5 %郑州: 0.2 %郑州: 0.2 %其他AshburnBeijingGuangzhou ShiHangzhouKunshanMontrealNanjingShijiazhuangXingfengXXYuncheng北京大连杭州深圳郑州Highcharts.com
计量
  • 文章访问数:  2617
  • HTML全文浏览数:  2374
  • PDF下载数:  367
  • 施引文献:  19
出版历程
  • 刊出日期:  2018-01-14
纪冬丽, 张竞, 孟凡生, 王业耀. 共存离子对EK/PRB联合修复砷污染土壤的影响[J]. 环境工程学报, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
引用本文: 纪冬丽, 张竞, 孟凡生, 王业耀. 共存离子对EK/PRB联合修复砷污染土壤的影响[J]. 环境工程学报, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
JI Dongli, ZHANG Jing, MENG Fansheng, WANG Yeyao. Interference of coexistence ions on arsenic removal from soil by electrokinetic process coupled with permeable reaction barrier[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133
Citation: JI Dongli, ZHANG Jing, MENG Fansheng, WANG Yeyao. Interference of coexistence ions on arsenic removal from soil by electrokinetic process coupled with permeable reaction barrier[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 172-177. doi: 10.12030/j.cjee.201703133

共存离子对EK/PRB联合修复砷污染土壤的影响

  • 1. 天津城建大学环境与市政工程学院,天津 300384
  • 2. 天津地质调查中心,天津 300170
  • 3. 中国环境科学研究院,北京 100012
  • 4. 中国环境监测总站,北京 100012
基金项目:

国家自然科学基金资助项目(51308520)

摘要: 以砷含量为500 mg·kg-1的模拟土壤为研究对象,采用电动/渗透性反应格栅(EK/PRB)联合技术对土壤中的砷进行去除。研究土壤共存离子Fe3+、Ca2+、Al3+、HCO-3、NO-3和PO3-4等的影响下电流密度、土壤pH分布、砷残余量的变化,重点研究土壤中不同形态砷之间的迁移转化规律。结果表明:添加共存离子后,土壤砷残余量增加,去除效率降低,由68%降低到41%;土壤电流密度变化幅度增加,由3 mA·cm-2在24 h后升高到9.5 mA·cm-2,然后在12 h内迅速下降,最后稳定在0.6 mA·cm-2;pH变化幅度增加,变化趋势未发生变化,均是靠近阴极侧呈碱性,靠近阳极侧呈酸性;土壤中砷残渣态由11.98%升高到39.81%,残渣态的升高是土壤中砷去除率降低的原因。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回