[1]
|
顾觉奋.国内外微生物药物生产状况及市场分析[M].北京:化学出版社,2011
|
[2]
|
ZHANG Q Q, YING G G, PAN C G, et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology,2015,9(11):6772-6782
|
[3]
|
MA W L, QI R, ZHANG Y, et al.Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J].Biochemical Engineering Journal,2009,5(1):30-34
|
[4]
|
俞文和.新编抗生素工艺学[M].北京:中国建材工业出版,1996
|
[5]
|
环境保护部.发酵类制药工业水污染物排放标准:GB 21903-2008[S].北京:中国环境科学出版社,2008
|
[6]
|
MA W, YANG M, WANG J, et al.Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J].Environmental Technology,2002,3(6):685-694
|
[7]
|
LI D, YU T, ZHANG Y, et al.Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river[J].Applied and Environmental Microbiology,2010,6(11):3444-3451
|
[8]
|
WAGNER M, LOY A.Bacterial community composition and function in sewage treatment systems[J].Current Opinion in Biotechnology,2002,3(3):218-227
|
[9]
|
刘苗苗,张昱,李栋,等.制药废水受纳河流中四环素抗药基因及微生物群落结构变化研究[J].环境科学学报,2010,0(8):1551-1557
|
[10]
|
LI D, YANG M, HU J, et al.Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river[J].Environmental Microbiology,2009,1(6):1506-1517
|
[11]
|
YI Q, ZHANG Y, GAO Y, et al.Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis:Simultaneous reduction of COD and ARGs[J].Water Research,2016,0:211-217
|
[12]
|
YI Q, GAO Y, ZHANG H, et al.Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J].Chemical Engineering Journal,2016,0:139-145
|
[13]
|
RUDOLPH E S J, ZOMERDIJK M, LUYBEN K C A M, et al.Correlating the phase behaviour of semi-synthetic antibiotics and their precursors in water+1-butanol mixtures[J].Fluid Phase Equilibria,1999,8(1):903-912
|
[14]
|
KEMPF K, SCHMITT F, BILITEWSKI U, et al.Synthesis, stereochemical assignment, and bioactivity of the Penicillium metabolites penicillenols B1 and B2[J].Tetrahedron,2015,1(31):5064-5068
|
[15]
|
HALLING-SRENSEN B, SENGEL V G, INGERSLEV F, et al.Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes[J].Archives of Environmental Contamination and Toxicology,2003,4(1):7-16
|
[16]
|
LI K, YEDILER A, YANG M, et al.Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products[J].Chemosphere,2008,2(3):473-478
|
[17]
|
MITCHELL S M, ULLMAN J L, TEEL A L, et al.Hydrolysis of amphenicol and macrolide antibiotics:Chloramphenicol, florfenicol, spiramycin, and tylosin[J].Chemosphere,2015,4:504-511
|
[18]
|
KITANO M, YAMAGUCHI D, SUGANUMA S, et al.Adsorption-enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups[J].Langmuir,2009,5(9):5068-5075
|
[19]
|
国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2015
|
[20]
|
DODD M C, RENTSCH D, SINGER H P, et al.Transformation of β-lactam antibacterial agents during aqueous ozonation:Reaction pathways and quantitative bioassay of biologically-active oxidation products[J].Environmental Science & Technology,2010,4(15):5940-5948
|
[21]
|
PAUL T, DODD M C, STRATHMANN T J.Photolytic and photocatalytic decomposition of aqueous ciprofloxacin:Transformation products and residual antibacterial activity[J].Water Research,2010,4(10):3121-3132
|
[22]
|
STURINI M, SPELTINI A, MARASCHI F, et al.Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J].Water Research,2012,6(17):5575-5582
|
[23]
|
HALLING-SRENSEN B, SENGEL V G, TJRNELUND J.Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J].Archives of Environmental Contamination and Toxicology,2002,2(3):263-271
|
[24]
|
WAMMER K H, LAPARA T M, MCNEILL K, et al.Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations[J].Environmental Toxicology and Chemistry,2006,5(6):1480-1486
|
[25]
|
DODD M C, KOHLER H P E, VON GUNTEN U.Oxidation of antibacterial compounds by ozone and hydroxyl radical:Elimination of biological activity during aqueous ozonation processes[J].Environmental Science & Technology,2009,3(7):2498-2504
|
[26]
|
HU L, STEMIG A M, WAMMER K H, et al.Oxidation of antibiotics during water treatment with potassium permanganate:Reaction pathways and deactivation[J].Environmental Science & Technology,2011,5(8):3635-3642
|
[27]
|
WAMMER K H, SLATTERY M T, STEMIG A M, et al.Tetracycline photolysis in natural waters:Loss of antibacterial activity[J].Chemosphere,2011,5(9):1505-1510
|
[28]
|
ZHANG H, ZHANG Y, YANG M, et al.Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method[J].Environmental Science Processes & Impacts,2015,7(11):1923-1929
|
[29]
|
张红,张昱,任立人,等.基于红霉素效价当量的不同抗生素生产废水残留效价的测定[J].环境工程学报,2016,0(9):4649-4656
|
[30]
|
CHELLIAPAN S, WILBY T, SALLIS P J.Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J].Water Research,2006,0(3):507-516
|
[31]
|
DORIVAL-GARC A N, ZAFRA-GMEZ A, NAVAL N A, et al.Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J].Journal of Environmental Management,2013,0:75-83
|
[32]
|
YANG S F, LIN C F, WU C J, et al.Fate of sulfonamide antibiotics in contact with activated sludge:Sorption and biodegradation[J].Water Research,2012,6(4):1301-1308
|
[33]
|
GUO R, XIE X, CHEN J.The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system[J].Environmental Technology,2015,6(7):844-851
|
[34]
|
LI D, YANG M, HU J, et al.Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J].Environmental Toxicology and Chemistry,2008,7(1):80-86
|
[35]
|
FIGUEROA R A, LEONARD A, MACKAY A A.Modeling tetracycline antibiotic sorption to clays[J].Environmental Science & Technology,2004,8(2):476-483
|
[36]
|
TOLLS J.Sorption of veterinary pharmaceuticals in soils:A review[J].Environmental Science & Technology,2001,5(17):3397-3406
|
[37]
|
SIMON N S.Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay[J].Environmental Science & Technology,2005,9(10):3480-3487
|
[38]
|
WANG J L, MAO D Q, MU Q H, et al.Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J].Science of the Total Environment,2015,6:366-373
|
[39]
|
YANG S F, LIN C F, LIN A Y C, et al.Sorption and biodegradation of sulfonamide antibiotics by activated sludge:Experimental assessment using batch data obtained under aerobic conditions[J].Water Research,2011,5(11):3389-3397
|
[40]
|
PRADO N, OCHOA J, AMRANE A.Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system[J].Process Biochemistry,2009,4(11):1302-1306
|
[41]
|
MITCHELL S M, ULLMAN J L, TEEL A L, et al.pH and temperature effects on the hydrolysis of three β-lactam antibiotics:Ampicillin, cefalotin and cefoxitin[J].Science of the Total Environment,2014,6-467:547-555
|
[42]
|
NAVALON S, ALVARO M, GARCIA H.Reaction of chlorine dioxide with emergent water pollutants:Product study of the reaction of three β-lactam antibiotics with ClO2[J].Water Research,2008,2(8):1935-1942
|
[43]
|
STACKELBERG P E, GIBS J, FURLONG E T, et al.Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds[J].Science of the Total Environment,2007,7(2):255-272
|
[44]
|
ANDREOZZI R, CANTERINO M, MAROTTA R, et al.Antibiotic removal from wastewaters:The ozonation of amoxicillin[J].Journal of Hazardous Materials,2005,2(3):243-250
|
[45]
|
AKMEHMET B I, LU I, TKER M.Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes[J].Chemosphere,2003,0(1):85-95
|
[46]
|
DANTAS R F, CONTRERAS S, SANS C, et al.Sulfamethoxazole abatement by means of ozonation[J].Journal of Hazardous Materials,2008,0(3):790-794
|
[47]
|
ANDREOZZI R, CAMPANELLA L, FRAYSSE B, et al.Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals[J].Water Science and Technology,2004,0(5):23-28
|
[48]
|
LIU M, ZHANG Y, ZHANG H, et al.Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater[J].Desalination and Water Treatment,2017,4:155-162
|
[49]
|
VON GUNTEN U.Ozonation of drinking water:Part I.Oxidation kinetics and product formation[J].Water Research,2003,7(7):1443-1467
|
[50]
|
张玮玮,弓爱君,邱丽娜,等.废水中抗生素降解和去除方法的研究进展[J].中国抗生素志,2013,8(6):401-410
|
[51]
|
ARSLAN-ALATON I, DOGRUEL S.Pre-treatment of penicillin formulation effluent by advanced oxidation processes[J].Journal of Hazardous Materials,2004,2(1):105-113
|
[52]
|
PEREZ-MOYA M, GRAELLS M, CASTELLS G, et al.Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process[J].Water Research,2010,4(8):2533-2540
|
[53]
|
ELMOLLA E S, CHAUDHURI M.Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process[J].Journal of Hazardous Materials,2009,2(2):1476-1481
|
[54]
|
LI S Z, LI X Y, WANG D Z.Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics[J].Separation and Purification Technology,2004,4(1):109-114
|
[55]
|
CHOI K J, KIM S G, KIM S H.Removal of antibiotics by coagulation and granular activated carbon filtration[J].Journal of Hazardous Materials,2008,1(1):38-43
|
[56]
|
VIENO N M, HRKKI H, TUHKANEN T, et al.Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J].Environmental Science & Technology,2007,1(14):5077-5084
|
[57]
|
PUTRA E K, PRANOWO R, SUNARSO J, et al.Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater:Mechanisms, isotherms and kinetics[J].Water Research,2009,3(9):2419-2430
|
[58]
|
SNCHEZ-POLO M, RIVERA-UTRILLA J, PRADOS-JOYA G, et al.Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system[J].Water Research,2008,2(15):4163-4171
|
[59]
|
MNDEZ-DAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al.Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase[J].Journal of Colloid and Interface Science,2010,5(2):481-490
|
[60]
|
KIM S H, SHON H K, NGO H H.Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon[J].Journal of Industrial and Engineering Chemistry,2010,6(3):344-349
|
[61]
|
KOYUNCU I, ARIKAN O A, WIESNER M R, et al.Removal of hormones and antibiotics by nanofiltration membranes[J].Journal of Membrane Science,2008,9(1):94-101
|
[62]
|
ELMOLLA E, CHAUDHURI M.Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J].Journal of Hazardous Materials,2009,0(2):666-672
|
[63]
|
GONZLEZ O, SANS C, ESPLUGAS S.Sulfamethoxazole abatement by photo-Fenton:Toxicity, inhibition and biodegradability assessment of intermediates[J].Journal of Hazardous Materials,2007,6(3):459-464
|
[64]
|
ARSLAN-ALATON I, CAGLAYAN A E.Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent[J].Ecotoxicology and Environmental Safety,2006,3(1):131-140
|
[65]
|
LIN A Y C, LIN C F, CHIOU J M, et al.O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J].Journal of Hazardous Materials,2009,1(1):452-458
|
[66]
|
HUBER M M, GBEL A, JOSS A, et al.Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents:A pilot study[J].Environmental Science & Technology,2005,9(11):4290-4299
|
[67]
|
QIANG Z, ADAMS C, SURAMPALLI R.Determination of ozonation rate constants for lincomycin and spectinomycin[J].Ozone:Science & Engineering,2004,6(6):525-537
|
[68]
|
KLAUSON D, BABKINA J, STEPANOVA K, et al.Aqueous photocatalytic oxidation of amoxicillin[J].Catalysis Today,2010,1(1):39-45
|
[69]
|
MOLINARI R, PIRILLO F, LODDO V, et al.Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor[J].Catalysis Today,2006,8(1):205-213
|
[70]
|
CALZA P, MEDANA C, PAZZI M, et al.Photocatalytic transformations of sulphonamides on titanium dioxide[J].Applied Catalysis B:Environmental,2004,3(1):63-69
|
[71]
|
SERNA-GALVIS E A, FERRARO F, SILVA-AGREDO J, et al.Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes[J].Water Research,2017,2:128-138
|
[72]
|
HIROSE J, KONDO F, NAKANO T, et al.Inactivation of antineoplastics in clinical wastewater by electrolysis[J].Chemosphere,2005,0(8):1018-1024
|
[73]
|
CARLESIJARA C, FINO D, SPECCHIA V, et al.Electrochemical removal of antibiotics from wastewaters[J].Applied Catalysis B:Environmental,2007,0(1):479-487
|
[74]
|
CHEN J, SUN P, ZHOU X, et al.Cu(II)-catalyzed transformation of benzylpenicillin revisited:The overlooked oxidation[J].Environmental Science & Technology,2015,9(7):4218-4225
|