制药废水中抗生素的去除技术研究进展

张昱, 唐妹, 田哲, 高迎新, 杨敏. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010
引用本文: 张昱, 唐妹, 田哲, 高迎新, 杨敏. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010
ZHANG Yu, TANG Mei, TIAN Zhe, GAO Yingxin, YANG Min. Research progress of removal technology of antibiotics from antibiotic production wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010
Citation: ZHANG Yu, TANG Mei, TIAN Zhe, GAO Yingxin, YANG Min. Research progress of removal technology of antibiotics from antibiotic production wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010

制药废水中抗生素的去除技术研究进展

  • 基金项目:

    国家自然科学基金资助项目(21590814)

Research progress of removal technology of antibiotics from antibiotic production wastewater

  • Fund Project:
  • 摘要: 发酵类抗生素生产废水中残留抗生素及相关物质(残留效价)含量高,对废水生物处理系统微生物群落结构以及废水处理效果影响显著,同时会导致生物处理细菌耐药基因的产生和排放;因此,如何去除废水中残留抗生素及效价是解决抗生素废水处理难题的关键。在前期研究的基础上,提出高浓度抗生素生产废水残留抗生素效价的水处理控制目标,概述了水中抗生素去除的生物和物化技术的最新研究进展,提出了在废水生物处理之前进行抗生素选择性去除的强化催化水解预处理技术方案,结合生物处理之后采用高级氧化技术保障该类废水安全排放,并对未来该类废水处理技术的发展方向提出了建议,以期为行业的可持续发展提供技术支持和科学依据。
  • 加载中
  • [1] 顾觉奋.国内外微生物药物生产状况及市场分析[M].北京:化学出版社,2011
    [2] ZHANG Q Q, YING G G, PAN C G, et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology,2015,9(11):6772-6782
    [3] MA W L, QI R, ZHANG Y, et al.Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J].Biochemical Engineering Journal,2009,5(1):30-34
    [4] 俞文和.新编抗生素工艺学[M].北京:中国建材工业出版,1996
    [5] 环境保护部.发酵类制药工业水污染物排放标准:GB 21903-2008[S].北京:中国环境科学出版社,2008
    [6] MA W, YANG M, WANG J, et al.Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J].Environmental Technology,2002,3(6):685-694
    [7] LI D, YU T, ZHANG Y, et al.Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river[J].Applied and Environmental Microbiology,2010,6(11):3444-3451
    [8] WAGNER M, LOY A.Bacterial community composition and function in sewage treatment systems[J].Current Opinion in Biotechnology,2002,3(3):218-227
    [9] 刘苗苗,张昱,李栋,等.制药废水受纳河流中四环素抗药基因及微生物群落结构变化研究[J].环境科学学报,2010,0(8):1551-1557
    [10] LI D, YANG M, HU J, et al.Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river[J].Environmental Microbiology,2009,1(6):1506-1517
    [11] YI Q, ZHANG Y, GAO Y, et al.Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis:Simultaneous reduction of COD and ARGs[J].Water Research,2016,0:211-217
    [12] YI Q, GAO Y, ZHANG H, et al.Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J].Chemical Engineering Journal,2016,0:139-145
    [13] RUDOLPH E S J, ZOMERDIJK M, LUYBEN K C A M, et al.Correlating the phase behaviour of semi-synthetic antibiotics and their precursors in water+1-butanol mixtures[J].Fluid Phase Equilibria,1999,8(1):903-912
    [14] KEMPF K, SCHMITT F, BILITEWSKI U, et al.Synthesis, stereochemical assignment, and bioactivity of the Penicillium metabolites penicillenols B1 and B2[J].Tetrahedron,2015,1(31):5064-5068
    [15] HALLING-SRENSEN B, SENGEL V G, INGERSLEV F, et al.Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes[J].Archives of Environmental Contamination and Toxicology,2003,4(1):7-16
    [16] LI K, YEDILER A, YANG M, et al.Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products[J].Chemosphere,2008,2(3):473-478
    [17] MITCHELL S M, ULLMAN J L, TEEL A L, et al.Hydrolysis of amphenicol and macrolide antibiotics:Chloramphenicol, florfenicol, spiramycin, and tylosin[J].Chemosphere,2015,4:504-511
    [18] KITANO M, YAMAGUCHI D, SUGANUMA S, et al.Adsorption-enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups[J].Langmuir,2009,5(9):5068-5075
    [19] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2015
    [20] DODD M C, RENTSCH D, SINGER H P, et al.Transformation of β-lactam antibacterial agents during aqueous ozonation:Reaction pathways and quantitative bioassay of biologically-active oxidation products[J].Environmental Science & Technology,2010,4(15):5940-5948
    [21] PAUL T, DODD M C, STRATHMANN T J.Photolytic and photocatalytic decomposition of aqueous ciprofloxacin:Transformation products and residual antibacterial activity[J].Water Research,2010,4(10):3121-3132
    [22] STURINI M, SPELTINI A, MARASCHI F, et al.Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J].Water Research,2012,6(17):5575-5582
    [23] HALLING-SRENSEN B, SENGEL V G, TJRNELUND J.Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J].Archives of Environmental Contamination and Toxicology,2002,2(3):263-271
    [24] WAMMER K H, LAPARA T M, MCNEILL K, et al.Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations[J].Environmental Toxicology and Chemistry,2006,5(6):1480-1486
    [25] DODD M C, KOHLER H P E, VON GUNTEN U.Oxidation of antibacterial compounds by ozone and hydroxyl radical:Elimination of biological activity during aqueous ozonation processes[J].Environmental Science & Technology,2009,3(7):2498-2504
    [26] HU L, STEMIG A M, WAMMER K H, et al.Oxidation of antibiotics during water treatment with potassium permanganate:Reaction pathways and deactivation[J].Environmental Science & Technology,2011,5(8):3635-3642
    [27] WAMMER K H, SLATTERY M T, STEMIG A M, et al.Tetracycline photolysis in natural waters:Loss of antibacterial activity[J].Chemosphere,2011,5(9):1505-1510
    [28] ZHANG H, ZHANG Y, YANG M, et al.Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method[J].Environmental Science Processes & Impacts,2015,7(11):1923-1929
    [29] 张红,张昱,任立人,等.基于红霉素效价当量的不同抗生素生产废水残留效价的测定[J].环境工程学报,2016,0(9):4649-4656
    [30] CHELLIAPAN S, WILBY T, SALLIS P J.Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J].Water Research,2006,0(3):507-516
    [31] DORIVAL-GARC A N, ZAFRA-GMEZ A, NAVAL N A, et al.Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J].Journal of Environmental Management,2013,0:75-83
    [32] YANG S F, LIN C F, WU C J, et al.Fate of sulfonamide antibiotics in contact with activated sludge:Sorption and biodegradation[J].Water Research,2012,6(4):1301-1308
    [33] GUO R, XIE X, CHEN J.The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system[J].Environmental Technology,2015,6(7):844-851
    [34] LI D, YANG M, HU J, et al.Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J].Environmental Toxicology and Chemistry,2008,7(1):80-86
    [35] FIGUEROA R A, LEONARD A, MACKAY A A.Modeling tetracycline antibiotic sorption to clays[J].Environmental Science & Technology,2004,8(2):476-483
    [36] TOLLS J.Sorption of veterinary pharmaceuticals in soils:A review[J].Environmental Science & Technology,2001,5(17):3397-3406
    [37] SIMON N S.Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay[J].Environmental Science & Technology,2005,9(10):3480-3487
    [38] WANG J L, MAO D Q, MU Q H, et al.Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J].Science of the Total Environment,2015,6:366-373
    [39] YANG S F, LIN C F, LIN A Y C, et al.Sorption and biodegradation of sulfonamide antibiotics by activated sludge:Experimental assessment using batch data obtained under aerobic conditions[J].Water Research,2011,5(11):3389-3397
    [40] PRADO N, OCHOA J, AMRANE A.Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system[J].Process Biochemistry,2009,4(11):1302-1306
    [41] MITCHELL S M, ULLMAN J L, TEEL A L, et al.pH and temperature effects on the hydrolysis of three β-lactam antibiotics:Ampicillin, cefalotin and cefoxitin[J].Science of the Total Environment,2014,6-467:547-555
    [42] NAVALON S, ALVARO M, GARCIA H.Reaction of chlorine dioxide with emergent water pollutants:Product study of the reaction of three β-lactam antibiotics with ClO2[J].Water Research,2008,2(8):1935-1942
    [43] STACKELBERG P E, GIBS J, FURLONG E T, et al.Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds[J].Science of the Total Environment,2007,7(2):255-272
    [44] ANDREOZZI R, CANTERINO M, MAROTTA R, et al.Antibiotic removal from wastewaters:The ozonation of amoxicillin[J].Journal of Hazardous Materials,2005,2(3):243-250
    [45] AKMEHMET B I, LU I, TKER M.Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes[J].Chemosphere,2003,0(1):85-95
    [46] DANTAS R F, CONTRERAS S, SANS C, et al.Sulfamethoxazole abatement by means of ozonation[J].Journal of Hazardous Materials,2008,0(3):790-794
    [47] ANDREOZZI R, CAMPANELLA L, FRAYSSE B, et al.Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals[J].Water Science and Technology,2004,0(5):23-28
    [48] LIU M, ZHANG Y, ZHANG H, et al.Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater[J].Desalination and Water Treatment,2017,4:155-162
    [49] VON GUNTEN U.Ozonation of drinking water:Part I.Oxidation kinetics and product formation[J].Water Research,2003,7(7):1443-1467
    [50] 张玮玮,弓爱君,邱丽娜,等.废水中抗生素降解和去除方法的研究进展[J].中国抗生素志,2013,8(6):401-410
    [51] ARSLAN-ALATON I, DOGRUEL S.Pre-treatment of penicillin formulation effluent by advanced oxidation processes[J].Journal of Hazardous Materials,2004,2(1):105-113
    [52] PEREZ-MOYA M, GRAELLS M, CASTELLS G, et al.Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process[J].Water Research,2010,4(8):2533-2540
    [53] ELMOLLA E S, CHAUDHURI M.Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process[J].Journal of Hazardous Materials,2009,2(2):1476-1481
    [54] LI S Z, LI X Y, WANG D Z.Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics[J].Separation and Purification Technology,2004,4(1):109-114
    [55] CHOI K J, KIM S G, KIM S H.Removal of antibiotics by coagulation and granular activated carbon filtration[J].Journal of Hazardous Materials,2008,1(1):38-43
    [56] VIENO N M, HRKKI H, TUHKANEN T, et al.Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J].Environmental Science & Technology,2007,1(14):5077-5084
    [57] PUTRA E K, PRANOWO R, SUNARSO J, et al.Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater:Mechanisms, isotherms and kinetics[J].Water Research,2009,3(9):2419-2430
    [58] SNCHEZ-POLO M, RIVERA-UTRILLA J, PRADOS-JOYA G, et al.Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system[J].Water Research,2008,2(15):4163-4171
    [59] MNDEZ-DAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al.Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase[J].Journal of Colloid and Interface Science,2010,5(2):481-490
    [60] KIM S H, SHON H K, NGO H H.Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon[J].Journal of Industrial and Engineering Chemistry,2010,6(3):344-349
    [61] KOYUNCU I, ARIKAN O A, WIESNER M R, et al.Removal of hormones and antibiotics by nanofiltration membranes[J].Journal of Membrane Science,2008,9(1):94-101
    [62] ELMOLLA E, CHAUDHURI M.Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J].Journal of Hazardous Materials,2009,0(2):666-672
    [63] GONZLEZ O, SANS C, ESPLUGAS S.Sulfamethoxazole abatement by photo-Fenton:Toxicity, inhibition and biodegradability assessment of intermediates[J].Journal of Hazardous Materials,2007,6(3):459-464
    [64] ARSLAN-ALATON I, CAGLAYAN A E.Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent[J].Ecotoxicology and Environmental Safety,2006,3(1):131-140
    [65] LIN A Y C, LIN C F, CHIOU J M, et al.O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J].Journal of Hazardous Materials,2009,1(1):452-458
    [66] HUBER M M, GBEL A, JOSS A, et al.Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents:A pilot study[J].Environmental Science & Technology,2005,9(11):4290-4299
    [67] QIANG Z, ADAMS C, SURAMPALLI R.Determination of ozonation rate constants for lincomycin and spectinomycin[J].Ozone:Science & Engineering,2004,6(6):525-537
    [68] KLAUSON D, BABKINA J, STEPANOVA K, et al.Aqueous photocatalytic oxidation of amoxicillin[J].Catalysis Today,2010,1(1):39-45
    [69] MOLINARI R, PIRILLO F, LODDO V, et al.Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor[J].Catalysis Today,2006,8(1):205-213
    [70] CALZA P, MEDANA C, PAZZI M, et al.Photocatalytic transformations of sulphonamides on titanium dioxide[J].Applied Catalysis B:Environmental,2004,3(1):63-69
    [71] SERNA-GALVIS E A, FERRARO F, SILVA-AGREDO J, et al.Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes[J].Water Research,2017,2:128-138
    [72] HIROSE J, KONDO F, NAKANO T, et al.Inactivation of antineoplastics in clinical wastewater by electrolysis[J].Chemosphere,2005,0(8):1018-1024
    [73] CARLESIJARA C, FINO D, SPECCHIA V, et al.Electrochemical removal of antibiotics from wastewaters[J].Applied Catalysis B:Environmental,2007,0(1):479-487
    [74] CHEN J, SUN P, ZHOU X, et al.Cu(II)-catalyzed transformation of benzylpenicillin revisited:The overlooked oxidation[J].Environmental Science & Technology,2015,9(7):4218-4225
  • 加载中
计量
  • 文章访问数:  10372
  • HTML全文浏览数:  9844
  • PDF下载数:  1389
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

制药废水中抗生素的去除技术研究进展

  • 1. 中国科学院生态环境研究中心高浓度难降解有机废水处理技术国家工程实验室,北京 100085
  • 2. 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085
  • 3. 中国科学院大学,北京 100049
基金项目:

国家自然科学基金资助项目(21590814)

摘要: 发酵类抗生素生产废水中残留抗生素及相关物质(残留效价)含量高,对废水生物处理系统微生物群落结构以及废水处理效果影响显著,同时会导致生物处理细菌耐药基因的产生和排放;因此,如何去除废水中残留抗生素及效价是解决抗生素废水处理难题的关键。在前期研究的基础上,提出高浓度抗生素生产废水残留抗生素效价的水处理控制目标,概述了水中抗生素去除的生物和物化技术的最新研究进展,提出了在废水生物处理之前进行抗生素选择性去除的强化催化水解预处理技术方案,结合生物处理之后采用高级氧化技术保障该类废水安全排放,并对未来该类废水处理技术的发展方向提出了建议,以期为行业的可持续发展提供技术支持和科学依据。

English Abstract

参考文献 (74)

目录

/

返回文章
返回