磁性还原石墨烯的制备及其对抗生素的吸附性能

李亚娟, 赵传起, 洪沛东, 王园园, 杨悦锁. 磁性还原石墨烯的制备及其对抗生素的吸附性能[J]. 环境工程学报, 2018, 12(1): 15-24. doi: 10.12030/j.cjee.201705157
引用本文: 李亚娟, 赵传起, 洪沛东, 王园园, 杨悦锁. 磁性还原石墨烯的制备及其对抗生素的吸附性能[J]. 环境工程学报, 2018, 12(1): 15-24. doi: 10.12030/j.cjee.201705157
LI Yajuan, ZHAO Chuanqi, HONG Peidong, WANG Yuanyuan, YANG Yuesuo. Fabrication of magnetic reduced graphene and its adsorption performance for antibiotics[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 15-24. doi: 10.12030/j.cjee.201705157
Citation: LI Yajuan, ZHAO Chuanqi, HONG Peidong, WANG Yuanyuan, YANG Yuesuo. Fabrication of magnetic reduced graphene and its adsorption performance for antibiotics[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 15-24. doi: 10.12030/j.cjee.201705157

磁性还原石墨烯的制备及其对抗生素的吸附性能

  • 基金项目:

    国家自然科学基金资助项目(41472237)

    教育部重点实验室开放基金资助项目(KLIEEE-15-06)

    辽宁省博士启动基金资助项目(201601214)

Fabrication of magnetic reduced graphene and its adsorption performance for antibiotics

  • Fund Project:
  • 摘要: 针对日益突出的抗生素水污染问题,利用共沉淀法制备磁性还原石墨烯(rGO/Fe3O4),并研究其对污染物去除性能。通过考察pH、吸附时间、污染物浓度等影响因素,研究rGO/Fe3O4对四环素(TC)和磺胺嘧啶(SDZ)2种典型抗生素的吸附性能,并分析吸附机理。实验结果表明:rGO/Fe3O4对2种抗生素具有很好的吸附能力,对TC和SDZ的最佳吸附pH分别在4.0和5.0左右,对应的最佳吸附量分别达到(114.29±1.60)和(20.64±2.17)mg·g-1;对TC的吸附效果要好于SDZ。rGO/Fe3O4对2种抗生素污染物的吸附更符合准二级反应模型,表明吸附过程是由化学反应控制,而不是物理扩散控制,通过计算可知,TC的吸附速度要快于吸附SDZ。rGO/Fe3O4对TC和SDZ的吸附过程更接近 Langmuir 吸附等温方程,模拟的最大吸附量分别为123.46和28.49 mg·g-1,与实测值很吻合。rGO/Fe3O4具有优良的磁性分离效果,可以快速完成与液相污染物的分离;对rGO/Fe3O4吸附2种抗生素的机理主要包括π-π共轭作用、氢键作用、静电作用以及范德华力等,这些作用力使rGO/Fe3O4对抗生素具有优良的吸附性能。
  • 加载中
  • [1] ZHANG Q Q, YING G G, PAN C G, et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of china: Source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology,2015,49(11):6772-6782
    [2] BU Q W, WANG B, HUANG J, et al.Pharmaceuticals and personal care products in the aquatic environment in China:A review[J].Journal of Hazardous Materials,2013,262:189-211
    [3] LE T X, MUNEKANG Y.Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Vietnam[J].Marine Pollution Bulletin,2004,49(11/12):922-929
    [4] 祁彦洁, 刘菲.地下水中抗生素污染检测分析研究进展[J].岩矿测试,2014,33(1):1-11
    [5] ZHU Y G, JOHNSON T A, SU J Q, et al.Diverse and abundant antibiotic resistance genes in Chinese swine farms[J].Proceedings of the National Academy of Sciences,2013,110(9):3435-3440
    [6] PAOLA G, VALERIA A, ANNA B C.Ecological effects of antibiotics on natural ecosystems: A review[EB/OL].[2017-05-06].https://doi.org/10.1016/j.microc.2017.02.006
    [7] PERREAULT F, FONSECA D F A, ELIMELECH M.Environmental applications of graphene-based nanomaterials[J].Chemical Society Reviews,2015,44(16):5861-5896
    [8] WANG J, CHEN B L.Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials[J].Chemical Engineering Journal,2015,281:379-388
    [9] ZHAO G X, JIANG L, HE Y D, et al.Sulfonated graphene for persistent aromatic pollutant management[J].Advanced Materials,2011,23(34):3959-3963
    [10] CHEN H, GAO B, LI H.Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene[J].Journal of Environmental Chemical Engineering,2014,2(1):310-315
    [11] GAO Y, LI Y, ZHANG L, et al.Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J].Journal of Colloid & Interface Science,2012,368(1):540-546
    [12] 吴春来, 樊静.石墨烯材料在重金属废水吸附净化中的应用[J].化工进展,2013,32(11):2668-2674
    [13] ZHAO C Q, XU X C, CHEN J, et al.Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes[J].Journal of Environmental Chemical Engineering,2013,1(3):349-354
    [14] ZHANG Y, LI Q, SUN L, et al.High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite[J].Journal of Hazardous Materials,2010,175(1/2/3):404-409
    [15] LIN Y X, XU S, LI J.Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles[J].Chemical Engineering Journal,2013,225(6):679-685
    [16] ZHANG Y, CHEN B, ZHANG L M, et al.Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide[J].Nanoscale,2011,3(4):1446-1450
    [17] 赵双阳.活性炭改性及吸附水中磺胺类抗生素的研究[D].哈尔滨:哈尔滨工业大学,2013
    [18] ZHANG X T, SHEN J C, ZHUO N, et al.Interactions between antibiotics and graphene-based materials in water: A comparative experimental and theoretical investigation[J].ACS Applied Materials & Interfaces,2016,8(36):24273-24280
    [19] SONG W C, YANG T T, WANG X X, et al.Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides[J].Environmental Science Nano,2016,3(6):1318-1326
  • 加载中
计量
  • 文章访问数:  4098
  • HTML全文浏览数:  3701
  • PDF下载数:  386
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

磁性还原石墨烯的制备及其对抗生素的吸附性能

  • 1. 沈阳大学环境学院,区域污染环境生态修复教育部重点实验室,沈阳110044
  • 2. 吉林大学地下水资源与环境教育部重点实验室,长春130021
基金项目:

国家自然科学基金资助项目(41472237)

教育部重点实验室开放基金资助项目(KLIEEE-15-06)

辽宁省博士启动基金资助项目(201601214)

摘要: 针对日益突出的抗生素水污染问题,利用共沉淀法制备磁性还原石墨烯(rGO/Fe3O4),并研究其对污染物去除性能。通过考察pH、吸附时间、污染物浓度等影响因素,研究rGO/Fe3O4对四环素(TC)和磺胺嘧啶(SDZ)2种典型抗生素的吸附性能,并分析吸附机理。实验结果表明:rGO/Fe3O4对2种抗生素具有很好的吸附能力,对TC和SDZ的最佳吸附pH分别在4.0和5.0左右,对应的最佳吸附量分别达到(114.29±1.60)和(20.64±2.17)mg·g-1;对TC的吸附效果要好于SDZ。rGO/Fe3O4对2种抗生素污染物的吸附更符合准二级反应模型,表明吸附过程是由化学反应控制,而不是物理扩散控制,通过计算可知,TC的吸附速度要快于吸附SDZ。rGO/Fe3O4对TC和SDZ的吸附过程更接近 Langmuir 吸附等温方程,模拟的最大吸附量分别为123.46和28.49 mg·g-1,与实测值很吻合。rGO/Fe3O4具有优良的磁性分离效果,可以快速完成与液相污染物的分离;对rGO/Fe3O4吸附2种抗生素的机理主要包括π-π共轭作用、氢键作用、静电作用以及范德华力等,这些作用力使rGO/Fe3O4对抗生素具有优良的吸附性能。

English Abstract

参考文献 (19)

目录

/

返回文章
返回