氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能

李青青, 朱振亚, 王磊, 姜家良, 徐亚伟. 氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能[J]. 环境工程学报, 2018, 12(1): 25-33. doi: 10.12030/j.cjee.201705167
引用本文: 李青青, 朱振亚, 王磊, 姜家良, 徐亚伟. 氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能[J]. 环境工程学报, 2018, 12(1): 25-33. doi: 10.12030/j.cjee.201705167
LI Qingqing, ZHU Zhenya, WANG Lei, JIANG Jialiang, XU Yawei. Preparation and antifouling performance of graphene oxide modified PVDF/PET composite membrane[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 25-33. doi: 10.12030/j.cjee.201705167
Citation: LI Qingqing, ZHU Zhenya, WANG Lei, JIANG Jialiang, XU Yawei. Preparation and antifouling performance of graphene oxide modified PVDF/PET composite membrane[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 25-33. doi: 10.12030/j.cjee.201705167

氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能

  • 基金项目:

    陕西省重点科技创新团队计划(2017KCT-19-01)

    陕西省重点产业链(群)项目(2017ZDCXL-GY-07-02)

Preparation and antifouling performance of graphene oxide modified PVDF/PET composite membrane

  • Fund Project:
  • 摘要: 采用PET编织管作为复合膜的结构层,将PVP和氧化石墨烯(GO)分别作为制孔剂和改性剂与PVDF基材混合,通过涂覆-浸没凝胶相转化法制备得到具有亲水性的高强度PVDF/PET编织管复合膜。观察复合膜的断面结构和表面形貌,测定其纯水通量、表面基团以及接触角等性能参数,并将不同浓度GO改性复合膜应用于序批式膜生物反应器(SMBR)中。利用原子力显微镜(AFM)及自制的污染物胶体探针测定了溶解性微生物产物(SMP)与膜面之间的微观作用力,考察改性复合膜的抗污染特性。在40 d的反应器运行实验中,GO改性复合膜的清洗周期较改性前延长了20%~40%,该结果说明改性复合膜能够有效抑制膜面对污染物的吸附,且GO质量分数为0.5%时清洗周期最长。AFM测试结果显示,复合膜中GO质量分数为0.5%时,SMP与膜面之间的黏附力最小,抗污染能力最强。
  • 加载中
  • [1] 王旭东, 马亚斌, 王磊, 等.倒置 A2/O-MBR 组合工艺处理生活污水效能及膜污染特性[J].环境科学,2015,36(10):3743-3748
    [2] BARRETO C M, GARCIA H A, HOOIJMANS C M, et al.Assessing the performance of an MBR operated at high biomass concentrations[J].International Biodeterioration & Biodegradation,2017,119:528-537
    [3] SONG K G, CHO J, CHO K, et al.Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions[J].Desalination,2010,250(2):801-804
    [4] HONG S P, BAE T H, TAK T M, et al.Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J].Desalination,2002,143(3):219-228
    [5] CHUA H C, ARNOT T C, HOWELL J A.Controlling fouling in membrane bioreactors operated with a variable throughput[J].Desalination,2002,149(1/2/3):225-229
    [6] JIANG T, KENNEDY M D, GUINZBOURG B F, et al.Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism[J].Water Science and Technology,2005,51(6/7):19-25
    [7] ZHANG J M, CHUA H C, ZHOU J, et al.Factors affecting the membrane performance in submerged membrane bioreactors[J].Journal of Membrane Science,2006,284(1/2):54-66
    [8] IVANOVIC I, LEIKNES T O.The biofilm membrane bioreactor (BF-MBR):A review[J].Desalination and Water Treatment,2012,37(1/2/3):288-295
    [9] ZHU Z Y, JIANG J L, WANG X D, et al.Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particle[J].Chemical Engineering Journal,2017,314:266-276
    [10] ZHU Z Y, WANG L, XU Y W, et al.Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection[J].Journal of Colloid & Interface Science,2017,504:429-439
    [11] RONG Z Y, WANG L, CHEN L C, et al.The effect of PVDF concentration on PVDF/woven tube composite membranes and the application of composite membranes in SMBR[J].Desalination and Water Treatment,2014,52(25/26/27):5052-5060
    [12] CHANG X J, WANG Z X, QUAN S, et al.Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride)(PVDF) ultrafiltration membrane performance[J].Applied Surface Science,2014,316(1):537-548
    [13] ZHANG D Q, TRZCINSKI A P, KUNACHEVA C, et al.Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds[J].Water Research,2016,102:594-606
    [14] JONES K L, O′MELIA C R.Ultrafiltration of protein and humic substances: Effect of solution chemistry on fouling and flux decline[J].Journal of Membrane Science,2001,193(2):163-173
    [15] LEE Y, CHO J, SEO Y, et al.Modeling of submerged membrane bioreactor process for wastewater treatment[J].Desalination,2002,146(1):451-457
    [16] ROSENBERGER S, LAABS C, LESJEAN B, et al.Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment[J].Water Research,2006,40(4):710-720
    [17] HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339
    [18] 张颖,王磊,容志勇,等.高强度PVDF-PET编织管改性复合膜的制备及其性能研究[J].膜科学与技术,2014,34(3):69-73
    [19] 吕晓龙,马世虎,陈燚.一种多孔分离膜孔径及其分布的测定方法[J].天津工业大学学报,2005,24(2):6-8
    [20] MIAO R, WANG L, WANG X D, et al.Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research[J].Desalination,2015,357:171-177
    [21] WANG G X, YANG J, PARK J, et al.Facile synthesis and characterization of graphene nanosheets[J].Journal of Physical Chemistry C,2008,112(22):8192-8195
    [22] ZHENG X L, XU Q, HE L H, et al.Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance of supercritical CO2 and its further functionalization[J].Journal of Physical Chemistry B,2011,115(19):5815-5826
    [23] YU L Y, XU Z L, SHEN H M, et al.Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method[J].Journal of Membrane Science,2009,337(1/2):257-265
    [24] SAFARPOUR M, KHATAEE A, VATANPOUR V.Effect of reduced graphene/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes[J].Separation & Purification Technology,2015,140:32-42
    [25] WANG L, MIAO R, WANG X D, et al.Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes:Characterization from microforces[J].Environmental Science and Technology,2013,47(8):3708-3714
    [26] DREWS A, MANTE J, IVERSEN V, et al.Impact of ambient conditions on SMP elimination and rejection in MBRs[J].Water Research,2007,41(17):3850-3858
  • 加载中
计量
  • 文章访问数:  4277
  • HTML全文浏览数:  3919
  • PDF下载数:  306
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能

  • 1. 西安建筑科技大学环境与市政工程学院,陕西省膜分离技术研究院,陕西省膜分离重点实验室,西安 710055
  • 2. 河北地质大学水资源与环境学院,河北省水资源可持续利用与开发重点实验室,石家庄 050031
基金项目:

陕西省重点科技创新团队计划(2017KCT-19-01)

陕西省重点产业链(群)项目(2017ZDCXL-GY-07-02)

摘要: 采用PET编织管作为复合膜的结构层,将PVP和氧化石墨烯(GO)分别作为制孔剂和改性剂与PVDF基材混合,通过涂覆-浸没凝胶相转化法制备得到具有亲水性的高强度PVDF/PET编织管复合膜。观察复合膜的断面结构和表面形貌,测定其纯水通量、表面基团以及接触角等性能参数,并将不同浓度GO改性复合膜应用于序批式膜生物反应器(SMBR)中。利用原子力显微镜(AFM)及自制的污染物胶体探针测定了溶解性微生物产物(SMP)与膜面之间的微观作用力,考察改性复合膜的抗污染特性。在40 d的反应器运行实验中,GO改性复合膜的清洗周期较改性前延长了20%~40%,该结果说明改性复合膜能够有效抑制膜面对污染物的吸附,且GO质量分数为0.5%时清洗周期最长。AFM测试结果显示,复合膜中GO质量分数为0.5%时,SMP与膜面之间的黏附力最小,抗污染能力最强。

English Abstract

参考文献 (26)

目录

/

返回文章
返回