排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控

王洪臣, 汪俊妍, 刘秀红, 黄冬, 徐相龙, 张景炳. 排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控[J]. 环境工程学报, 2018, 12(7): 1853-1864. doi: 10.12030/j.cjee.201712184
引用本文: 王洪臣, 汪俊妍, 刘秀红, 黄冬, 徐相龙, 张景炳. 排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控[J]. 环境工程学报, 2018, 12(7): 1853-1864. doi: 10.12030/j.cjee.201712184
WANG Hongchen, WANG Junyan, LIU Xiuhong, HUANG Dong, XU Xianglong, ZHANG Jingbing. Competition and regulation of sulfate-reducing bacteria and methanogenic archaea in sewers[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1853-1864. doi: 10.12030/j.cjee.201712184
Citation: WANG Hongchen, WANG Junyan, LIU Xiuhong, HUANG Dong, XU Xianglong, ZHANG Jingbing. Competition and regulation of sulfate-reducing bacteria and methanogenic archaea in sewers[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1853-1864. doi: 10.12030/j.cjee.201712184

排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2015ZX07322002-001)

    国家自然科学基金资助项目(51508561)

Competition and regulation of sulfate-reducing bacteria and methanogenic archaea in sewers

  • Fund Project:
  • 摘要: 城市排水管道生物膜及底泥中存在着复杂的菌群及其相互作用,可产生H2S、CH4等多种有毒有害气体,造成管道腐蚀,危害城市管网安全。在总结2种关键微生物菌群―硫酸盐还原菌(SRB)与产甲烷菌(MA)的分类、代谢机理及两者在产气反应过程中的底物竞争关系的基础上,阐述了SRB、MA在排水管道微环境中的分层分布特征,重点梳理与分析了SRB、MA的调控因素及方法。由于SRB、MA对于不同抑制剂的耐受性不同,且处于生物膜内部的菌群会受到传质阻力的保护作用,因此,控制H2S时须增加抑制剂的单次投加量,对于CH4,则须延长抑制剂的投加周期。研究为今后开展管网废气控制提供了微生物学理论基础,并为城市管网防腐及维护提供了具体的调控依据。
  • 加载中
  • [1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2016
    [2] EIJO-RíO E, PETIT-BOIX A, VILLALBA G, et al.Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions: A review and case studies[J].Journal of Environmental Chemical Engineering,2015,3(3):2084-2094 10.1016/j.jece.2015.07.006
    [3] ZHANG L S, DESCHRYVER P, DEGUSSEME B, et al.Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review[J].Water Research,2008,42(1):1-12 0.1016/j.watres.2007.07.013
    [4] GUISASOLA A, DEHAAS D, KELLER J, et al.Methane formation in sewer systems[J].Water Research,2008,42(6):1421-1430 10.1016/j.watres.2007.10.014
    [5] LIU Y W, NI B J, SHARMA K R, et al.Methane emission from sewers[J].Science of the Total Environment,2015,524:40-51
    [6] AUGUET O, PIJUAN M, BATISTA J, et al.Changes in microbial biofilm communities during colonization of sewer systems[J].Applied and Environmental Microbiology,2015,81(20):7271-7280 10.1128/AEM.01538-15
    [7] WEI S P, JIANG Z L, LIU H, et al.Microbiologically induced deterioration of concrete: A review[J].Brazilian Journal of Microbiology,2013,44(4):1001-1007 10.1590/S1517-83822014005000006
    [8] PAULO L M, STAMS A J M, SOUSA D Z.Methanogens, sulphate and heavy metals: A complex system[J].Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 537-553
    [9] SANTEGOEDS C M, DAMGAARD L R, HESSELINK G, et al.Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses[J].Applied and Environmental Microbiology,1999,65(10):4618-4629
    [10] SCHMITT F, SEYFRIED C F.Sulfate reduction in sewer sediments[J].Water Science and Technology,1992,25(8):83-90
    [11] GUISASOLA A, SHARMA K R, KELLER J, et al.Development of a model for assessing methane formation in rising main sewers[J].Water Research,2009,43(11):2874-2884 10.1016/j.watres.2009.03.040
    [12] MOHANAKRISHNAN J, GUTIERREZ O, SHARMA K R, et al.Impact of nitrate addition on biofilm properties and activities in rising main sewers[J].Water Research,2009,43(17):4225-4237 10.1016/j.watres.2009.06.021
    [13] SUN J, HU S H, SHARMA K R, et al.Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J].Applied and Environmental Microbiology,2014,80(22):7042-7052
    [14] 任南琪, 王爱杰, 甄卫东. 厌氧处理构筑物中 SRB 的生态学[J]. 哈尔滨建筑大学学报,2001,34(1):39-44
    [15] 杜刚, 孙静贤, 张广求,等. 硫酸盐还原菌的分离筛选及鉴定[J]. 基因组学与应用生物学,2017,36(1):246-251
    [16] 陈悟. 硫酸盐还原菌多相分类系统与综合防治方法研究[D]. 武汉:华中科技大学,2006
    [17] ITO T, NIELSEN J L, OKABE S, et al.Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization[J].Applied and Environmental Microbiology,2002,68(1):356-364
    [18] 承磊, 郑珍珍, 王聪,等. 产甲烷古菌研究进展[J]. 微生物学通报,2016,43(5):1143-1164
    [19] 王保玉, 刘建民, 韩作颖,等. 产甲烷菌的分类及研究进展[J]. 基因组学与应用生物学,2014,33(2):418-425
    [20] WELTE C, DEPPENMEIER U.Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens[J].Biochimica et Biophysica Acta:Bioenergetics,2014,1837(7):1130-1147 10.1016/j.bbabio.2013.12.002
    [21] 匡欣,王菊思. 硫酸盐在厌氧生物过程中的行为 Ⅱ. 硫酸盐还原行为及对体系抑制作用机理[J]. 环境科学学报,1993,13(4):414-419
    [22] YODA M, KITAGAWA M, MIYAJI Y.Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm[J].Water Research,1987,21(12):1547-1556 10.1016/0043-1354(87)90140-0
    [23] 贾晓珊, 李顺义. 厌气混合培养中产甲烷菌和硫酸盐还原菌的动力学竞争 Ⅱ. 动力学推定的结果及讨论[J]. 中山大学学报(自然科学版),2004,43(1):92-97
    [24] SCH?NHEIT P, KRISTJANSSON J K, THAUER R K.Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate[J].Archives of Microbiology,1982,132(3):285-288
    [25] 王爱杰,任南琪,杜大仲,等. 硫酸盐还原过程中乙酸型代谢方式的形成及其稳定性[J]. 环境科学,2004,25(2):73-76
    [26] 贾晓珊,李顺义. 厌气混合培养中产甲烷菌和硫酸盐还原菌的动力学竞争 Ⅰ. 动力学推定的模型及实验方法[J]. 中山大学学报(自然科学版),2003,42(6):103-106
    [27] TALAIEKHOZANI A, BAGHERI M, GOLI A, et al.An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems[J].Journal of Environmental Management,2016,170(6):186-206 10.1016/j.jenvman.2016.01.021
    [28] SHARMA K, DERLON N, HU S H, et al.Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm[J].Water Research,2014,49(2):175-185 10.1016/j.watres.2013.11.019
    [29] GUTIERREZ O, PARK D, SHARMA K R, et al.Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J].Water Research,2009,43(9):2549-2557 10.1016/j.watres.2009.03.008
    [30] KHAN A W, TROTTIER T M.Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge[J].Applied and Environmental Microbiology,1978,35(6):1027-1034
    [31] KOSTER I W, RINZEMA A, DE VEGT A L, et al.Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels[J].Water Research, 1986,20(12):1561-1567 10.1016/0043-1354(86)90121-1
    [32] 许雅玲,伍健东.pH值对硫酸盐还原菌颗粒污泥性能的影响[J]. 工业用水与废水,2010,41(1):32-35
    [33] SHARMA K, GANIGUE R, YUAN Z G.pH dynamics in sewers and its modeling[J].Water Research,2013,47(16):6086-6096
    [34] GUTIERREZ O, SUDARJANTO G, REN G, et al.Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J].Water Research,2014,48(1):569-578 10.1016/j.watres.2013.10.021
    [35] MCCARTNEY D M, OLESZKIEWICZ J A.Competition between methanogens and sulfate reducers: Effect of COD: sulfate ratio and acclimation[J].Water Environment Research,1993,65(5):655-664 10.2175/WER.65.5.8
    [36] CHOI E, RIM J M.Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment[J].Water Science and Technology,1991,23(7/8/9):1259-1264
    [37] SUN J, NI B J, SHARMA K R, et al.Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J].Water Research,2018,129:58-65 10.1016/j.watres.2017.11.007
    [38] KHANAL S K, HUANG J C.Effect of high influent sulfate on anaerobic wastewater treatment[J].Water Environment Research,2005,77(7):3037-3046 10.2175/106143005X73929
    [39] SUN J, HU S H, SHARMA K R, et al.Impact of reduced water consumption on sulfide and methane production in rising main sewers[J].Journal of Environmental Management,2015,154(4):307-315 10.1016/j.jenvman.2015.02.041
    [40] GANIGUé R, YUAN Z G.Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J].Journal of Environmental Management,2014,144:279-285 10.1016/j.jenvman.2014.04.023
    [41] 冯颖,康勇,张忠国. 含重金属离子酸性废水的厌氧生物处理[J]. 环境科学与技术,2004,27(6):104-106
    [42] PATIDAR S K, TARE V.Effect of nutrients on biomass activity in degradation of sulfate laden organics[J].Process Biochemistry,2006,41(2):489-495 10.1016/j.procbio.2005.07.001
    [43] 蒋永荣,刘可慧,文麒麟,等. 微量金属对硫酸盐有机废水厌氧处理颗粒污泥活性的影响[J]. 生态环境学报,2014,23(11):1821-1825
    [44] NIELSEN A H, LENS P, VOLLERTSEN J, et al.Sulfide-iron interactions in domestic wastewater from a gravity sewer[J].Water Research,2005,39(12):2747-2755 10.1016/j.watres.2005.04.048
    [45] ZHANG L S, KELLER J, YUAN Z G.Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J].Water Research,2009,43(17):4123-4132 10.1016/j.watres.2009.06.013
    [46] UTGIKAR V P, HARMON S M, CHAUDHARY N, et al.Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage[J].Environmental Toxicology,2002,17(1):40-48 10.1002/tox.10031
    [47] ZHANG L S, DERLON N, KELLER J, et al.Dynamic response of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms to ferric dosing[J].Journal of Environmental Engineering,2011,138(4):510-517 10.1061/(ASCE)EE.1943-7870.0000481
    [48] GANIGUE R, GUTIERREZ O, ROOTSEY R, et al.Chemical dosing for sulfide control in Australia: An industry survey[J].Water Research,2011,45(19):6564-6574 10.1016/j.watres.2011.09.054
    [49] ZHANG L S, KELLER J, YUAN Z G.Ferrous salt demand for sulfide control in rising main sewers: Tests on a laboratory-scale sewer system[J].Journal of Environmental Engineering,2010,136(10):1180-1187 10.1061/(ASCE)EE.1943-7870.0000258
    [50] MARLENI N, GRAY S, SHARMA A, et al.Impact of water source management practices in residential areas on sewer networks: A review[J].Water Science and Technology,2012,65(4):624-642 10.2166/wst.2012.902
    [51] RODRíGUEZ-GóMEZ L E, DELGADO S, áLVAREZ M, et al.Inhibition of sulfide generation in a reclaimed wastewater pipe by nitrate dosage and denitrification kinetics[J].Water Environment Research,2005,77(2):193-198 10.2175/106143005X41762
    [52] MUYZER G, STAMS A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454 10.1038/nrmicro1892
    [53] YANG W J, VOLLERTSEN J, HVITVED-JACOBSEN T.Anoxic sulfide oxidation in wastewater of sewer networks[J].Water Science and Technology,2005,52(3):191-199
    [54] JIANG G M, SHARMA K R, GUISASOLA A, et al.Sulfur transformation in rising main sewers receiving nitrate dosage[J].Water Research,2009,43(17):4430-4440 10.1016/j.watres.2009.07.001
    [55] JIANG G M, SHARMA K R, YUAN Z G.Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor[J].Water Research,2013,47(5):1783-1792 10.1016/j.watres.2012.12.036
    [56] LIU Y C, ZHOU X H, SHI H C.Sulfur cycle by in situ analysis in the sediment biofilm of a sewer system[J].Journal of Environmental Engineering,2015,142(9):C4015011 10.1061/(ASCE)EE.1943-7870.0000991
    [57] LIU Y W, SHARMA K R, NI B J, et al.Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment[J].Water Research,2015,74:155-165 10.1016/j.watres.2015.02.017
    [58] LIU Y C, WU C, ZHOU X H, et al.Sulfide elimination by intermittent nitrate dosing in sewer sediments[J].Journal of Environmental Sciences,2015,27(1):259-265 10.1016/j.jes.2014.06.038
    [59] HAVEMAN S A, GREENE E A, STILWELL C P, et al.Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite[J].Journal of Bacteriology,2004,186(23):7944-7950 10.1128/JB.186.23.7944-7950.2004
    [60] JIANG G M, GUTIERREZ O, SHARMA K R, et al.Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J].Water Research,2010,44(14):4241-4251 10.1016/j.watres.2010.05.030
    [61] MOHANAKRISHNAN J, KOFOED M V W, BARR J, et al.Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate[J].Applied Microbiology and Biotechnology,2011,91(6):1647-1657 10.1007/s00253-011-3330-3
    [62] JIANG G M, YUAN Z G.Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide[J].Journal of Hazardous Materials,2013,250-251(8):91-98 10.1016/j.jhazmat.2013.01.047
    [63] TUGTAS A E, PAVLOSTATHIS S G.Inhibitory effects of nitrogen oxides on a mixed methanogenic culture[J].Biotechnology and Bioengineering,2007,96(3):444-455 10.1002/bit.21105
    [64] AUGUET O, PIJUAN M, BORREGO C M, et al.Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage[J].Science of the Total Environment,2016,550:1116-1125 10.1016/j.scitotenv.2016.01.130
    [65] JIANG G M, GUTIERREZ O, YUAN Z G.The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms[J].Water Research,2011,45(12):3735-3743 10.1016/j.watres.2011.04.026
    [66] JIANG G M, GUTIERREZ O, SHARMA K R, et al.Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers[J].Water Research,2011,45(18):6163-6172 10.1016/j.watres.2011.09.009
    [67] GAO S H, HO J Y, FAN L, et al.Antimicrobial effects of free nitrous acid on Desulfovibrio vulgaris: Implications for sulfide induced concrete corrosion[J].Applied and Environmental Microbiology,2016,82(18):5563-5575
    [68] JIANG G M, KEATING A, CORRIE S, et al.Dosing free nitrous acid for sulfide control in sewers: Results of field trials in Australia[J].Water Research,2013,47(13):4331-4339 10.1016/j.watres.2013.05.024
    [69] ROCHEX A, GODON J J, BERNET N, et al.Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities[J].Water Research,2008,42(20):4915-4922 10.1016/j.watres.2008.09.015
    [70] XU J W, LI M Z, HE Q, et al.Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer[J].Environmental Science and Pollution Research,2017,24(1):427-435
    [71] AI H N, XU J W, HUANG W, et al.Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers[J].Water Science and Technology,2016,73(7):1572-1582 10.2166/wst.2015.633
    [72] 艾海男,王银亮,黄维,等. 不同水力条件下排水管道生物膜中氮元素分布特性[J]. 中国环境科学,2015,35(10):2991-2995
  • 加载中
计量
  • 文章访问数:  8061
  • HTML全文浏览数:  7732
  • PDF下载数:  550
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

排水管道中硫酸盐还原菌与产甲烷菌的竞争与调控

  • 1. 中国人民大学环境学院,北京 100872
基金项目:

国家水体污染控制与治理科技重大专项(2015ZX07322002-001)

国家自然科学基金资助项目(51508561)

摘要: 城市排水管道生物膜及底泥中存在着复杂的菌群及其相互作用,可产生H2S、CH4等多种有毒有害气体,造成管道腐蚀,危害城市管网安全。在总结2种关键微生物菌群―硫酸盐还原菌(SRB)与产甲烷菌(MA)的分类、代谢机理及两者在产气反应过程中的底物竞争关系的基础上,阐述了SRB、MA在排水管道微环境中的分层分布特征,重点梳理与分析了SRB、MA的调控因素及方法。由于SRB、MA对于不同抑制剂的耐受性不同,且处于生物膜内部的菌群会受到传质阻力的保护作用,因此,控制H2S时须增加抑制剂的单次投加量,对于CH4,则须延长抑制剂的投加周期。研究为今后开展管网废气控制提供了微生物学理论基础,并为城市管网防腐及维护提供了具体的调控依据。

English Abstract

参考文献 (72)

目录

/

返回文章
返回