Ti/Ru/SnO2+Sb2O5电极的制备及其对垃圾渗滤液的电催化氧化

汪昕蕾, 秦侠, 袁少鹏, 周梦楠, 焦点. Ti/Ru/SnO2+Sb2O5电极的制备及其对垃圾渗滤液的电催化氧化[J]. 环境工程学报, 2018, 12(7): 1865-1871. doi: 10.12030/j.cjee.201712045
引用本文: 汪昕蕾, 秦侠, 袁少鹏, 周梦楠, 焦点. Ti/Ru/SnO2+Sb2O5电极的制备及其对垃圾渗滤液的电催化氧化[J]. 环境工程学报, 2018, 12(7): 1865-1871. doi: 10.12030/j.cjee.201712045
WANG Xinlei, QIN Xia, YUAN Shaopeng, ZHOU Mengnan, JIAO Dian. Preparation of Ti/Ru/SnO2+Sb2O5 electrode and electrocatalytic oxidation of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1865-1871. doi: 10.12030/j.cjee.201712045
Citation: WANG Xinlei, QIN Xia, YUAN Shaopeng, ZHOU Mengnan, JIAO Dian. Preparation of Ti/Ru/SnO2+Sb2O5 electrode and electrocatalytic oxidation of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1865-1871. doi: 10.12030/j.cjee.201712045

Ti/Ru/SnO2+Sb2O5电极的制备及其对垃圾渗滤液的电催化氧化

  • 基金项目:

    北京市重点学科资助项目(005000541215082)

Preparation of Ti/Ru/SnO2+Sb2O5 electrode and electrocatalytic oxidation of landfill leachate

  • Fund Project:
  • 摘要: 通过实验探究了不同Ru掺杂量对 Ti/Ru/SnO2+Sb2O5电极电化学性能及表面结构的影响。结果表明:Sb含量10%,溶胶涂覆6层,煅烧温度600 ℃,煅烧时间1 h条件下,Ru掺杂量为10%的涂层电极的加速寿命最长,为50 min;该条件下制备的电极涂层表面金属氧化物 SnO2的特征峰强度较大,峰形窄;涂层表面光滑,无裂缝。同时用Ti/Ru/SnO2+Sb2O5电极处理垃圾渗滤液MBR出水,Ru掺杂为10%的电极对废水COD去除率最高,为93.33%,电解出水芳香化程度大幅降低,对腐殖质和芳香族化合物的去除效果良好。研究对Ti/Ru/SnO2+Sb2O5电极在实际工业生产中的应用具有指导意义。
  • 加载中
  • [1] LEONARDO S A, THIAGO T T, DIOGO L, et al.On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the reactive orange 16 dye[J].Electrochimica Acta,2008,54(7):2024-2030 10.1016/j.electacta.2008.08.026
    [2] CHEN G H.Electrochemical technologies in wastewater treatment[J].Separation and Purification,2004,38(1):11-41 10.1016/j.seppur.2003.10.006
    [3] KIM S Y, CHOI S K, YOON B Y.Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb-SnO2/Ti anodes for water treatment[J].Applied Catalysis B: Environmental,2010,97:135-141 10.1016/j.apcatb.2010.03.033
    [4] 张招贤,黄东. 涂层钛电极[M]. 北京:冶金工业出版社,2014
    [5] CHAING L C, CHANG J E, WEN T C.Destruction of refractory humic acid by electromechanical oxidation process[J].Water Science Technology,2000,42(3/4):225-232
    [6] SERGIO T.Electrocatalysis in the anodic evolution of oxygen and chlorine[J].Electrochim Acta,1984,29(11):1503-1512 10.1016/0013-4686(84)85004-5
    [7] 占鹏辉. 电催化氧化法降解RO浓缩液COD的研究[D]. 大连: 大连海事大学,2013
    [8] 高平. 钛基SnO2-Sb电极的制备及电催化氧化苯酚过程的研究[D]. 哈尔滨: 哈尔滨工业大学,2012
    [9] HU J M, ZHANG J Q, MENG H M, et al.Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 compounds[J].Electrochimica Acta,2005,50(27):5370-5378 10.1016/j.electacta.2005.03.016
    [10] YAVUZ Y, KOPARAL A S.Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode[J].Journal of Hazardous Materials,2006,136(2):296-302 10.1016/j.jhazmat.2005.12.018
    [11] RAJALO G, PETROVSKAYA T.Selective electrochemical oxidation of sulphides in tannery wastewater[J].Environmental Technology,1996,17(6):605-612 10.1080/09593331708616424
    [12] CAO J L, ZHAO H Y, CAO F H, et al.Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes[C].Electrochimica Acta,2009,56:2595-2602
    [13] RICHARD J, WATTS M S, WYETH D D, et al.Optimization of Ti/SnO2-Sb2O5 anode preparation for electro chemical oxidation of organic contaminants in water and wastewater[J].Journal of Applied Electrochemistry,2008,38:31-37 10.1007/s10800-007-9391-4
    [14] KOTA R, STUCKI S, CARCER B.Electrochemical wastewater treatment using high overvoltage anodes.Part I: Physical and electrochemical properties of SnO2 anodes[J].Journal of Applied Electrochemistry,1991,21(1):14-20 10.1007/BF01464288
    [15] 吴根英,许双姐,王君翔, 等.FR-CNTs-PbO2/SnO2-Sb/Ti电极性能及电催化降解罗丹明B[J]. 环境化学,2013,32(3):358-365
    [16] 陈洁,尚鸿艳,柴青立,等.Ti/Sb-SnO2功能电极的制备及电化学处理废水的性能[J]. 环境化学,2011,30(8):1405-1410
    [17] CHEN A C, NIGRO S.Influence of a nanoscal gold thin layer on Ti/SnO2-Sb2O5 electrodes[J].Journal of Physical Chemistry B,2003,107(48) :13341-13348
    [18] WILLIAM H R.The Structure of Metals and Alloys[M].London: Institute of Metals,1936
    [19] 鲍秀瑾,邵争辉,武献春,等.UV254在焦化废水处理中的应用[J]. 燃料与化工,2011,42(6):42-44
    [20] SHIRRA G R, IIAN K, DOSOETZ C G.Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J].Water Research,2008,42(6/7):1595-1605 10.1016/j.watres.2007.10.004
    [21] PEURAVUORI J,PIHLAJA K.Isolation and characterization of natural organic matter from lake water: Comparison of isolation with solid adsorption and tangential membrane filtration[J].Environment International,1997,23(4):441-451 10.1016/S0160-4120(97)00049-4
    [22] BARRETO S R G, NOZAKI J, BARRETO W J.Origin of dissolved organic carbon studied by UV-vis spectroscopy[J].Clean Soil Air Water,2003,31(6):513-518 10.1002/aheh.200300510
    [23] GREGORY V K, BENJAMIN M, SHELTTEN R S.Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of oregano-halide[J].Water Research,1997,31(7):1643-1650 10.1016/S0043-1354(97)00007-9
    [24] 郑淑平,李亚静,孙力平.pH值对垃圾渗滤液中溶解有机物检测的影响及分析[J]. 环境工程,2013,31(4):123-125
    [25] 吉芳英,谢志刚,黄鹤,等. 垃圾渗滤液处理工艺中有机污染物的三维荧光光谱[J]. 环境工程学报,2009,3(10):1793-1788
  • 加载中
计量
  • 文章访问数:  3689
  • HTML全文浏览数:  3385
  • PDF下载数:  334
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

Ti/Ru/SnO2+Sb2O5电极的制备及其对垃圾渗滤液的电催化氧化

  • 1. 北京工业大学环境与能源工程学院,北京 100020
基金项目:

北京市重点学科资助项目(005000541215082)

摘要: 通过实验探究了不同Ru掺杂量对 Ti/Ru/SnO2+Sb2O5电极电化学性能及表面结构的影响。结果表明:Sb含量10%,溶胶涂覆6层,煅烧温度600 ℃,煅烧时间1 h条件下,Ru掺杂量为10%的涂层电极的加速寿命最长,为50 min;该条件下制备的电极涂层表面金属氧化物 SnO2的特征峰强度较大,峰形窄;涂层表面光滑,无裂缝。同时用Ti/Ru/SnO2+Sb2O5电极处理垃圾渗滤液MBR出水,Ru掺杂为10%的电极对废水COD去除率最高,为93.33%,电解出水芳香化程度大幅降低,对腐殖质和芳香族化合物的去除效果良好。研究对Ti/Ru/SnO2+Sb2O5电极在实际工业生产中的应用具有指导意义。

English Abstract

参考文献 (25)

目录

/

返回文章
返回