厌氧氨氧化耦合部分反硝化处理低浓度氨氮废水

陈国燕, 彭党聪, 李惠娟, 姚倩, 孙红方. 厌氧氨氧化耦合部分反硝化处理低浓度氨氮废水[J]. 环境工程学报, 2018, 12(7): 1888-1895. doi: 10.12030/j.cjee.201712107
引用本文: 陈国燕, 彭党聪, 李惠娟, 姚倩, 孙红方. 厌氧氨氧化耦合部分反硝化处理低浓度氨氮废水[J]. 环境工程学报, 2018, 12(7): 1888-1895. doi: 10.12030/j.cjee.201712107
CHEN Guoyan, PENG Dangcong, LI Huijuan, YAO Qian, SUN Hongfang. Treating low-nitrogenous wastewater by coupling anammox with partial denitrification[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1888-1895. doi: 10.12030/j.cjee.201712107
Citation: CHEN Guoyan, PENG Dangcong, LI Huijuan, YAO Qian, SUN Hongfang. Treating low-nitrogenous wastewater by coupling anammox with partial denitrification[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1888-1895. doi: 10.12030/j.cjee.201712107

厌氧氨氧化耦合部分反硝化处理低浓度氨氮废水

  • 基金项目:

    陕西省住房城乡科技开发项目(2015-K65)

Treating low-nitrogenous wastewater by coupling anammox with partial denitrification

  • Fund Project:
  • 摘要: 通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH4+-N)与硝氮(NO3--N),考察不同NO3--N/NH4+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH4+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH4+-N浓度为20~40 mg·L-1的条件下,NO3--N/NH4+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH4+-N比为1.2时,耦合效果最佳,对应的NH4+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62 ± 0.44)mg·(g·h)-1 (以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。
  • 加载中
  • [1] ABMA W R, DRIESSEN W, HAARHUIS R, et al.Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater[J].Water Science & Technology,2010,61(7):1715-1722 10.2166/wst.2010.977
    [2] AZARI M, WALTER U, REKERS V, et al.More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm[J].Chemosphere,2017,174:117-126 10.1016/j.chemosphere.2017.01.123
    [3] KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M.Sewage treatment with Anammox[J].Science,2010,328(5979):702-703 10.1126/science.1185941
    [4] 崔剑虹, 李祥, 黄勇.部分亚硝化-厌氧氨氧化工艺联合形式、应用及脱氮效能评析[J].化工进展,化工进展,2015,34(8):3142-3146 10.16085/j.issn.1000-6613.2015.08.038
    [5] CASTRO B C M, JIA M, VAN LOOSDRECHT M C, et al.Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment[J].Bioresource Technology,2017,233:363-372 10.1016/j.biortech.2017.02.063
    [6] KARTAL B, KUYPERS M M M, LAVIK G, et al.Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium[J].Environmental Microbiology,2007,9(3):635-642 10.1111/j.1462-2920.2006.01183.x
    [7] BONIN P.Anaerobic nitrate reduction to ammonium in two strains isolated from costal marine sediment: A dissimilatory pathway[J].FEMS Microbiology Ecology,1996,19(1):27-38 10.1111/j.1574-6941.1996.tb00195.x
    [8] 黄斯婷, 杨庆, 刘秀红, 等. 不同碳源条件下污水处理反硝化过程亚硝态氮积累特性的研究进展[J]. 水处理技术,2015,41(7):21-24
    [9] DU R, PENG Y, CAO S, et al.Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J].Applied Microbiology and Biotechnology,2016,100(4):2011-2021 10.1007/s00253-015-7052-9
    [10] CAO S, WANG S, PENG Y, et al.Achieving partical denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge[J].Bioresource Technology,2013,149(4):570-574 10.1016/j.biortech.2013.09.072
    [11] 李惠娟, 彭党聪, 陈国燕, 等.ANAMMOX的快速启动及EPS在ANAMMOX颗粒污泥中的空间分布[J]. 环境科学,2017,38(7):2931-2940 10.13227/j.hjkx.201701037
    [12] 李惠娟. 部分亚硝化/厌氧氨氧化处理高氨氮废水试验研究[D]. 西安:西安建筑科技大学, 2017
    [13] 董晓莹, 彭党聪. 不同碳氮比下污水反硝化过程中亚硝氮积累的特性研究[J]. 环境科学学报,2017,37(9):3349-3355 10.13671/j.hjkxxb.2017.0108
    [14] GRAAF V D A A, DE BRUIJN P, ROBERTSON L A, et al.Autotrophic growth of anaerobic, ammonium oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology,1996,142(8):2187-2196 10.1099/13500872-142-8-2187
    [15] 国家环境保护局. 水和废水监测分析方法[M]. 4 版. 北京: 中国环境科学出版社,2002:258-282
    [16] AMANN R I, KRUMHOLZ L, STAHL D A.Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental-studies in microbiology[J].Journal of Bacteriology,1990,172(2):762-770
    [17] DAIMS H, BRUEHLL A, AMANN R, et al.The domain-specific probe EUB338 is insuffucuent for the detection of all bacteria: Development and evaluation of a more comprehensive probe set[J].Systematic & Applied Microbiology,1999,22(3):434-444 10.1016/S0723-2020(99)80053-8
    [18] SCHMID M, WALSH K, WEBB R, et al.Candidatus “Scalindua brodae”, sp nov., Candidatus “Scalindua wagneri”, sp nov., two new species of anaerobic ammonium oxidizing bacteria[J].Systematic & Applied Microbiology,2003,26(4):529-538 10.1073/pnas.0500825102
    [19] LIU Y, TAY J H.The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J].Water Research,2002,36(7):1653-1665 10.1016/S0043-1354(01)00379-7
    [20] LOTTI T, KLEEREBEZEM R, LUBELLO C, et al.Physiological and kinetic characterization of a suspended cell anammox culture[J].Water Research,2014,60:1-14 10.1016/j.watres.2014.04.017
    [21] KUMAR M, LIN J G.Co-existence of anammox and denitrification for simultanenous nitrogen and carbon removal-strategies and issues[J].Journal of Hazardous Materials,2010,178(1):1-9 10.1016/j.jhazmat.2010.01.077
    [22] STROU M, HEIJNEN H, KUENEN J G, et al.The sequencing batch reactor as a powerful tool for the study of sloely growing anaerobic ammonium oxidating microorganisms[J].Applied Micobiology Biotechnology,1998, 50(5):589-596 10.1007/s002530051340
    [23] KALYUZHNY S, GLADCHENKO M, LYBERATOS G, et al.DEAMOX: New microbiological process of nitrogen removal from strong nitrogenous wastewater[J].Desalination,2009,248(1):783-793 10.1016/j.desal.2009.02.054
    [24] YESHI C, HONG K B, VAN LOOSDRECHT M C M, et al.Mainstream partial nitritation and anammox in a 200 000 m3/day activated sludge process in Singapore: Scale-down by using laboratory fed-batch reactor[J].Water Science and Technology,2016,74(1):48-56 10.2166/wst.2016.116
  • 加载中
计量
  • 文章访问数:  4187
  • HTML全文浏览数:  3857
  • PDF下载数:  434
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

厌氧氨氧化耦合部分反硝化处理低浓度氨氮废水

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 西安工程大学环境与化学工程学院,西安 710048
  • 3. 西安市污水处理有限责任公司,西安 710086
基金项目:

陕西省住房城乡科技开发项目(2015-K65)

摘要: 通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH4+-N)与硝氮(NO3--N),考察不同NO3--N/NH4+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH4+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH4+-N浓度为20~40 mg·L-1的条件下,NO3--N/NH4+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH4+-N比为1.2时,耦合效果最佳,对应的NH4+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62 ± 0.44)mg·(g·h)-1 (以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。

English Abstract

参考文献 (24)

目录

/

返回文章
返回