pH对中和沉淀法处理涂装废水效果影响及作用机理

付海娟, 池勇志, 赵建海, 田秉晖, 付翠莲, 郑先强. pH对中和沉淀法处理涂装废水效果影响及作用机理[J]. 环境工程学报, 2018, 12(7): 1896-1906. doi: 10.12030/j.cjee.201712162
引用本文: 付海娟, 池勇志, 赵建海, 田秉晖, 付翠莲, 郑先强. pH对中和沉淀法处理涂装废水效果影响及作用机理[J]. 环境工程学报, 2018, 12(7): 1896-1906. doi: 10.12030/j.cjee.201712162
FU Haijuan, CHI Yongzhi, ZHAO Jianhai, TIAN Binghui, FU Cuilian, ZHENG Xianqiang. Mechanism and effect of pH on coating wastewater in neutralization and precipitation process[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1896-1906. doi: 10.12030/j.cjee.201712162
Citation: FU Haijuan, CHI Yongzhi, ZHAO Jianhai, TIAN Binghui, FU Cuilian, ZHENG Xianqiang. Mechanism and effect of pH on coating wastewater in neutralization and precipitation process[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1896-1906. doi: 10.12030/j.cjee.201712162

pH对中和沉淀法处理涂装废水效果影响及作用机理

  • 基金项目:

    天津市科技计划项目(16YFXTSF00390)

    天津市科技计划项目(15ZCZDSF00150)

    天津城建大学科技成果转化奖励专项资金项目(KZZH2-A2-1726)

Mechanism and effect of pH on coating wastewater in neutralization and precipitation process

  • Fund Project:
  • 摘要: 采用中和沉淀法对涂装废水进行处理,研究了pH(4~12)对废水中总磷、COD、浊度、总铁、总镍、总锰等12种主要污染物去除率的影响,并结合絮体粒度分布、Zeta电位、絮体形貌和XRD图谱等表征方式对COD和重金属的去除机理进行了分析。研究结果表明,在综合考虑后续生化处理需要和处理成本的条件下,中和沉淀法处理涂装废水的适宜pH为8,废水经处理后所有重金属离子浓度和总磷浓度均达到《污水排入城镇下水道水质标准》 (GB/T 31962-2015 )B级标准,COD、浊度和氨氮的去除率分别为30.05%、46.51%和72.49%。无机污染物去除的主要途径包括磷酸盐沉淀形成、氢氧化物沉淀形成和吸附絮凝作用。COD的去除机制随着pH的变化而不同,在pH =2.18~8时,COD的去除主要由于不溶性金属络合物的形成、电性中和与卷扫网捕,在pH =10~12时,主要的作用机制为氢氧化物絮体对其的吸附作用和卷扫网捕。这对中和沉淀法工艺处理实际涂装废水有重要的指导意义。
  • 加载中
  • [1] 李明喜. 整车厂涂装车间废水处理工艺及应用研究[D]. 长春: 吉林大学,2013
    [2] 杜万义, 张晓燕. 绿色涂装: 自行车行业生存与发展之路[J]. 现代涂料与涂装,2016,19(7):50-52
    [3] XIONG Z K, CAO J Y, YANG D, et al.Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing[J].Chemosphere,2017,166:343-351 10.1016/j.chemosphere.2016.09.038
    [4] DEVI A, SINGHAL A, GUPTA R, et al.A study on treatment methods of spent pickling liquor generated by pickling process of steel[J].Clean Technologies & Environmental Policy,2014,16(8):1515-1527 10.1007/s10098-014-0726-7
    [5] 吴傲立, 鲍建国, 龚珞军. 铁碳微电解预处理汽车电泳涂装废水[J]. 环境工程学报,2014,8(9):3843-3847
    [6] SEO E Y, CHEONG Y W, YIM G J, et al.Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH[J].Catena,2017,148:11-16 10.1016/j.catena.2016.07.022
    [7] 国家环境保护总局. 水和废水监测分析方法[M]. 4 版. 北京: 中国环境科学出版社,2002
    [8] THISTLETON J, BERRY T A, PEARCE P, et al.Mechanisms of chemical phosphorus removal II:Iron(III) salts[J].Process Safety & Environmental Protection,2002,80(5):265-269 10.1205/095758202762277623
    [9] QIU L, ZHENG P, ZHANG M, et al.Phosphorus removal using ferric-calcium complex as precipitant: Parameters optimization and phosphorus-recycling potential[J].Chemical Engineering Journal,2015,268:230-235 10.1016/j.cej.2014.12.107
    [10] 崔凤国, 杨鹏, 张伟军, 等. 混凝和活性炭吸附深度处理制药废水中有机物去除特征[J]. 环境工程学报,2015,9(9):4359-4364
    [11] CHAUDHARI P K, MAJUMDAR B, CHOUDHARY R, et al.Treatment of paper and pulp mill by coagulation[J].Environmental Technology,2010,31(4):357-363 10.1080/09593330903486665
    [12] 刘应梅, 银欢, 褚良银. 重金属离子吸附用微凝胶研究新进展[J]. 化工进展,2016,35(10):3323-3330 10.16085/j.issn.1000-6613.2016.10.043
    [13] 赖鹏, 赵华章, 倪晋仁. 硫酸铁混凝剂处理焦化废水A/O 工艺出水的研究[J]. 中国环境科学,2008,28(3):215-219 10.3321/j.issn:1000-6923.2008.03.005
    [14] PI K, XIA M, YANG X, et al.Optimization of COD decrease from tobacco wastewater by Ca/Mg/Al coagulant using RSM[J].Journal of Water Process Engineering,2015,5:166-171 10.1016/j.jwpe.2014.11.002
    [15] SHEN S B, TYAGI R D, BLAIS J F.Prediction of metal precipitates in tannery sludge leachate based on thermodynamic calculations[J].Environmental Technology,2001,22(8):961-970 1080/09593332208618232
    [16] CHOUMANE F Z, BENGUELLA B, MAACHOU B, et al.Valorisation of a bioflocculant and hydroxyapatites as coagulationflocculation adjuvants in wastewater treatment of the steppe in the wilaya of Saida (Algeria)[J].Ecological Engineering,2017,107(Supplement C):152-159 10.1016/j.ecoleng.2017.07.013
    [17] 戴文灿, 周发庭, 黄晴.Na2S-DDTC 深度处理络合Ni 高浓度电镀废水[J]. 中国环境科学,2016,36(3):768-777 10.3969/j.issn.1000-6923.2016.03.020
    [18] 李亚峰, 吕春华, 陈萍, 等. 混凝和化学沉淀法联合处理垃圾渗滤液[J]. 沈阳建筑大学学报(自然科学版),2007,23(2):280-283 10.3969/j.issn.2095-1922.2007.02.024
    [19] 李瑾. 城市污水处理厂二级处理出水中磷的组分及去除特性研究[D]. 西安: 西安建筑科技大学,2015
    [20] 骆欣, 顾平, 张光辉. 共沉淀法在水处理中的应用研究进展[J]. 中国给水排水,2013,29(20):30-34
    [21] 李新颖, INNOCENT F R, 陈泉源. 含锌离子模拟废水沉淀研究及污泥表征[J]. 环境工程学报,2013,7(5):1859-1864
    [22] BAI Y Z, GUAN H Y, CUI J H.Effect of amphoteric Zn2+ on the determination of B2O3 content in glass[J].Key Engineering Materials, 2016,680:289-292 10.4028/www.scientific.net/KEM.680.289
    [23] 袁方. 不同pH 值下重金属的形态及MEUF 法对其去除机理的研究[D]. 长沙: 湖南大学,2016
    [24] 张秋野, 胡鹏杰, 王鹏程, 等. 伴矿景天汁液中重金属形态及絮凝沉淀效果优化[J]. 环境工程学报,2017,11(9):1-10 10.12030 /j.cjee.201706178
    [25] GUéRIN L, COUFORT-SAUDEJAUD C, LINé A, et al.Dynamics of aggregate size and shape properties under sequenced flocculation in a turbulent Taylor-Couette reactor[J].Journal of Colloid & Interface Science,2017,491:167-178 10.1016/j.jcis.2016.12.042
    [26] 封娜, 李文朴, 赵建海, 等. 氢氧化镁混凝性能及絮体特性[J]. 环境工程学报,2013,7(5):1749-1753
  • 加载中
计量
  • 文章访问数:  3994
  • HTML全文浏览数:  3674
  • PDF下载数:  348
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

pH对中和沉淀法处理涂装废水效果影响及作用机理

  • 1. 天津城建大学环境与市政工程学院天津市水质科学与技术重点实验室,天津 30038
  • 2. 天津城建大学基础设施防护和环境绿色生物技术国际联合研究中心,天津 30038
  • 3. 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 10008
  • 4. 天津城建大学建筑设计研究院,天津 30038
  • 5. 天津天一爱拓科技有限公司,天津 30038
基金项目:

天津市科技计划项目(16YFXTSF00390)

天津市科技计划项目(15ZCZDSF00150)

天津城建大学科技成果转化奖励专项资金项目(KZZH2-A2-1726)

摘要: 采用中和沉淀法对涂装废水进行处理,研究了pH(4~12)对废水中总磷、COD、浊度、总铁、总镍、总锰等12种主要污染物去除率的影响,并结合絮体粒度分布、Zeta电位、絮体形貌和XRD图谱等表征方式对COD和重金属的去除机理进行了分析。研究结果表明,在综合考虑后续生化处理需要和处理成本的条件下,中和沉淀法处理涂装废水的适宜pH为8,废水经处理后所有重金属离子浓度和总磷浓度均达到《污水排入城镇下水道水质标准》 (GB/T 31962-2015 )B级标准,COD、浊度和氨氮的去除率分别为30.05%、46.51%和72.49%。无机污染物去除的主要途径包括磷酸盐沉淀形成、氢氧化物沉淀形成和吸附絮凝作用。COD的去除机制随着pH的变化而不同,在pH =2.18~8时,COD的去除主要由于不溶性金属络合物的形成、电性中和与卷扫网捕,在pH =10~12时,主要的作用机制为氢氧化物絮体对其的吸附作用和卷扫网捕。这对中和沉淀法工艺处理实际涂装废水有重要的指导意义。

English Abstract

参考文献 (26)

目录

/

返回文章
返回