DOC系统催化性能的仿真和分析

谭理刚, 郭雅各, 杨树宝, 冯鹏飞, 李子文. DOC系统催化性能的仿真和分析[J]. 环境工程学报, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
引用本文: 谭理刚, 郭雅各, 杨树宝, 冯鹏飞, 李子文. DOC系统催化性能的仿真和分析[J]. 环境工程学报, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
TAN Ligang, GUO Yage, YANG Shubao, FENG Pengfei, LI Ziwen. Numerical simulation and analysis of catalytic performance of DOC system[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
Citation: TAN Ligang, GUO Yage, YANG Shubao, FENG Pengfei, LI Ziwen. Numerical simulation and analysis of catalytic performance of DOC system[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105

DOC系统催化性能的仿真和分析

  • 基金项目:

    国家科技支撑计划项目(2014BAG09B-01)

Numerical simulation and analysis of catalytic performance of DOC system

  • Fund Project:
  • 摘要: 以 Langmuire Hinshelwood机理为理论依据,基于MATLAB/Simulink 建立DOC系统的数值计算模型,研究不同参数(如空速、氧气浓度、NO2/NOx比例)对氮氧化物(NOx)、一氧化碳(CO)、碳氢化合物(HC)转化效率的影响, 并对部分工况进行了实验研究,从而验证数值模型的准确性。结果表明,空速的降低可以增大DOC对CO、HC、NO的氧化性能,这是由于排气在催化器内的反应时间增长。当排气温度为225~300 ℃时,减小空速对增大HC的氧化效率效果明显,当排气温度在175~450 ℃范围内,减小空速对增大NO的氧化效率影响明显;当O2浓度低于1%,排气温度在175~250 ℃时,CO转化效率增大,在250 ℃之后均接近100%。当O2浓度为10%时,温度的变化对CO的转化效率影响很小。当O2浓度大于1%时,温度的变化对NO的氧化效率影响较大;当排气温度在300~550 ℃时,NO2/NOx比例的变化对NO的转化效率影响较大。降低排气中NO2/NOx比例,能够在排气温度高于300 ℃时,明显提高NO的转化效率。
  • 加载中
  • [1] KOTA S H, ZHANG H L, CHEN G, et al.Evaluation of on-road vehicle CO and NOx national emission inventories using an urban-scale source-oriented air quality model[J].Atmospheric Environment,2014,85:99-108 10.1016/j.atmosenv.2013.11.020
    [2] SKALSKA K, MILLER J S, LEDAKOWICZ S.Trends in NOx abatement:A review[J].Science of the Total Environment,2010,408(19):3976-3989 10.1016/j.scitotenv.2010.06.001
    [3] VERSCHAEREN R, SCHAEPDRYVER W, SERRUYS T, et al.Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing[J].Energy,2014,76:614-621 10.1016/j.energy.2014.08.059
    [4] BHASKAR K,NAGARAJAN G,SAMPATH S.Optimization of FOME (fish oil methylesters) blend and EGR (exhaust gas recirculation) for simultaneous control of NOx and particulate matter emissions in diesel engines[J].Energy,2013,62:224-234 10.1016/j.energy.2013.09.056
    [5] JAFARMADAR S.Multidimensional modeling of the effect of EGR (exhaust gas recirculation) mass fraction on energy terms in an indirect injection diesel engine[J].Energy,2014,66:305-313 10.1016/j.energy.2014.01.040
    [6] KITTELSON D B, WATTS W F, JOHNSON J P, et al.On-road evaluation of two diesel exhaust aftertreatment devices[J].Journal of Aerosol Science,2006, 37(9):1140-1151 10.1016/j.jaerosci.2005.11.003
    [7] GUO M Y, FU Z C, MA D G, et al.A short review of treatment methods of marine dieselengine exhaust gases[J].Procedia Engineering,2015,121:938-943 10.1016/j.proeng.2015.09.059
    [8] CIMINO S, LISI L, TORTORELLI M.Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning:Effect of KCl poisoning[J].Chemical Engineering Journal,2016,283:223-230 10.1016/j.cej.2015.07.033
    [9] CAUDA E, FINO D, SARACCO G, et al.Secondary nanoparticle emissions during diesel particulate trap regeneration[J].Topics in Catalysis,2007, 42-43(1/2/3/4):253-257 10.1007/s11244-007-0186-y
    [10] HARADA K, YAMADA H, OKAMOTO K, et al.Development of high performance catalyzed DPF with new soot burning mechanism[J].Catalysis Surveys from Asia, 2010, 14(3/4):176-184 10.1007/s10563-010-9099-z
    [11] TAN P Q.Effects of diesel particulate filter structural parameters on filtration performance of different size particles[J].Chinese Journal of Mechanical Engineering,2008,44(2):175-181
    [12] KNECHT W.Diesel engine development in view of reduced emission standaras[J].Energy,2008,33(2):264-271 10.1016/j.energy.2007.10.003
    [13] TWIGG M V.Progress and future challenges in controlling automotive exhaust gas emissions[J].Applied Catalysis B: Environmental,2007,70(1/2/3/4):2-15 10.1016/j.apcatb.2006.02.029
  • 加载中
计量
  • 文章访问数:  3077
  • HTML全文浏览数:  2822
  • PDF下载数:  243
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26
谭理刚, 郭雅各, 杨树宝, 冯鹏飞, 李子文. DOC系统催化性能的仿真和分析[J]. 环境工程学报, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
引用本文: 谭理刚, 郭雅各, 杨树宝, 冯鹏飞, 李子文. DOC系统催化性能的仿真和分析[J]. 环境工程学报, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
TAN Ligang, GUO Yage, YANG Shubao, FENG Pengfei, LI Ziwen. Numerical simulation and analysis of catalytic performance of DOC system[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105
Citation: TAN Ligang, GUO Yage, YANG Shubao, FENG Pengfei, LI Ziwen. Numerical simulation and analysis of catalytic performance of DOC system[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2004-2009. doi: 10.12030/j.cjee.201712105

DOC系统催化性能的仿真和分析

  • 1. 湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
  • 2. 广西玉柴机器股份有限公司,玉林 537000
基金项目:

国家科技支撑计划项目(2014BAG09B-01)

摘要: 以 Langmuire Hinshelwood机理为理论依据,基于MATLAB/Simulink 建立DOC系统的数值计算模型,研究不同参数(如空速、氧气浓度、NO2/NOx比例)对氮氧化物(NOx)、一氧化碳(CO)、碳氢化合物(HC)转化效率的影响, 并对部分工况进行了实验研究,从而验证数值模型的准确性。结果表明,空速的降低可以增大DOC对CO、HC、NO的氧化性能,这是由于排气在催化器内的反应时间增长。当排气温度为225~300 ℃时,减小空速对增大HC的氧化效率效果明显,当排气温度在175~450 ℃范围内,减小空速对增大NO的氧化效率影响明显;当O2浓度低于1%,排气温度在175~250 ℃时,CO转化效率增大,在250 ℃之后均接近100%。当O2浓度为10%时,温度的变化对CO的转化效率影响很小。当O2浓度大于1%时,温度的变化对NO的氧化效率影响较大;当排气温度在300~550 ℃时,NO2/NOx比例的变化对NO的转化效率影响较大。降低排气中NO2/NOx比例,能够在排气温度高于300 ℃时,明显提高NO的转化效率。

English Abstract

参考文献 (13)

返回顶部

目录

/

返回文章
返回