新型管状光催化反应器降解VOCs特性

刘鹏, 郑洁, 周亚亚, 周雪梅. 新型管状光催化反应器降解VOCs特性[J]. 环境工程学报, 2018, 12(7): 2010-2017. doi: 10.12030/j.cjee.201712118
引用本文: 刘鹏, 郑洁, 周亚亚, 周雪梅. 新型管状光催化反应器降解VOCs特性[J]. 环境工程学报, 2018, 12(7): 2010-2017. doi: 10.12030/j.cjee.201712118
LIU Peng, ZHENG Jie, ZHOU Yaya, ZHOU Xuemei. Removal performance of VOCs with novel annular air purifier[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2010-2017. doi: 10.12030/j.cjee.201712118
Citation: LIU Peng, ZHENG Jie, ZHOU Yaya, ZHOU Xuemei. Removal performance of VOCs with novel annular air purifier[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2010-2017. doi: 10.12030/j.cjee.201712118

新型管状光催化反应器降解VOCs特性

  • 基金项目:

    国家自然科学基金资助项目(51478058)

    贵州省科技计划项目(黔科合LH字[2017]7242号)

    贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)

    贵州省土木工程一流学科建设项目(2017000006)

    贵州大学引进人才科研项目(贵大人基合字[2015]22号)

Removal performance of VOCs with novel annular air purifier

  • Fund Project:
  • 摘要: 以一种新型折流式管状光催化反应器为研究对象,选择甲醛、苯和甲苯为目标污染物,以紫外光源、催化剂负载量和反应器内循环流量为关键影响因素,利用非密闭型环境舱,分析了反应器降解室内VOCs特性。结果表明,在254 nm和365 nm紫外光源照射下,VOCs的总衰减系数随初始浓度的增加而增大,且254 nm紫外光源照射下的总衰减系数更大。365 nm紫外光源照射时,VOCs的反应有效度随催化剂负载量的增加而增大;254 nm紫外光源照射时,反应有效度受催化剂负载量变化的影响很小。VOCs的转化率随循环流量的增加而增大,而反应速率受循环流量的影响较小;相同的循环流量下,转化率和反应速率均随着VOCs初始浓度增加而增大。由于增设肋片,折流式管状反应器比传统无肋片管状反应器的洁净空气量提升60%,且反应有效度更接近0.5,说明前者的传质-反应速率更加匹配,降解性能明显更优。
  • 加载中
  • [1] WESCHLER C J.Changes in indoor pollutants since the 1950s[J].Atmospheric Environment,2009,43(1):153-169 10.1016/j.atmosenv.2008.09.044
    [2] PASSALIA C, ALFANO O M, BRANDI R J.A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters[J].Journal of Hazardous Materials,2012,211-212:357-365 10.1016/j.jhazmat.2011.10.007
    [3] BARAN T, MACYK W.Photocatalytic oxidation of volatile pollutants of air driven by visible light[J].Journal of Photochemistry and Photobiology A: Chemistry, 2012,241:8-12 10.1016/j.jphotochem.2012.05.008
    [4] FARHANIAN D, HAGHIGHAT F.Photocatalytic oxidation air cleaner: Identification and quantification of by-products[J].Building and Environment,2014,72:34-43 10.1016/j.buildenv.2013.10.014
    [5] MAMAGHANI A H, HAGHIGHAT F, LEE C S.Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art[J].Applied Catalysis B: Environmental,2017,203:247-269 10.1016/j.apcatb.2016.10.037
    [6] REN L, LI Y Z, HOU J T, et al.The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed (001) facets on photocatalysis for the photocatalytic purification of VOCs[J].Applied Catalysis B: Environmental,2016,181:625-634 10.1016/j.apcatb.2015.08.034
    [7] DESTAILLATS H, SLEIMAN M, SULLIVAN D P, et al.Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions[J].Applied Catalysis B: Environmental,2012,128:159-170 10.1016/j.apcatb.2012.03.014
    [8] MONTEIRO R A R, MIRANDA S M, RODRIGUES-SILVA C, et al.Gas phase oxidation of n-decane and PCE by photocatalysis using an annular photoreactor packed with a monolithic catalytic bed coated with P25 and PC500[J].Applied Catalysis B: Environmental,2015,165:306-315 10.1016/j.apcatb.2014.10.026
    [9] MO J H, ZHANG Y P, XU Q J, et al.Photocatalytic purification of volatile organic compounds in indoor air: A literature review[J].Atmospheric Environment,2009,43(14):2229-2246 10.1016/j.atmosenv.2009.01.034
    [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 空气净化器: GB/T 18801-2015[S]. 北京: 中国标准出版社,2015
    [11] CEN J W, LI X J, HE M X, et al.The effect of background irradiation on photocatalytic efficiencies of TiO2 thin films[J].Chemosphere,2006,62:810-816 10.1016/j.chemosphere.2005.05.008
    [12] MO J H, ZHANG Y P, YANG R.Novel insight into VOC removal performance of photocatalytic oxidation reactors[J].Indoor Air,2005,15(4):291-300 10.1111/j.1600-0668.2005.00374.x
    [13] TANG F, YANG X D.A “deactivation” kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene[J].Building and Environment,2012,56:329-334 10.1016/j.buildenv.2012.04.001
    [14] YANG L P, LIU Z Y, SHI J W, et al.Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde[J].Catalysis Today,2007,126(3/4):359-368 10.1016/j.cattod.2007.06.017
    [15] ASSADI A A, BOUZAZA A, WOLBERT D.Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity[J].Journal of Photochemistry and Photobiology A: Chemistry,2012,236:61-69 10.1016/j.jphotochem.2012.03.020
    [16] CHEN D, LI F, RAY A K.Effect of mass transfer and catalyst layer thickness on photocatalytic reaction[J].AIChE Journal,2000,46(5):1034–1045 10.1002/aic.690460515
    [17] MO J H, ZHANG Y P, YANG R, et al.Influence of fins on formaldehyde removal in annular photocatalytic reactors[J].Building and Environment,2008,43(3):238-245 10.1016/j.buildenv.2005.12.027
  • 加载中
计量
  • 文章访问数:  2693
  • HTML全文浏览数:  2389
  • PDF下载数:  310
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

新型管状光催化反应器降解VOCs特性

  • 1. 贵州大学土木工程学院, 贵阳 550025
  • 2. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
  • 3. 贵州财经大学高等教育研究与评估中心, 贵阳 550025
基金项目:

国家自然科学基金资助项目(51478058)

贵州省科技计划项目(黔科合LH字[2017]7242号)

贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)

贵州省土木工程一流学科建设项目(2017000006)

贵州大学引进人才科研项目(贵大人基合字[2015]22号)

摘要: 以一种新型折流式管状光催化反应器为研究对象,选择甲醛、苯和甲苯为目标污染物,以紫外光源、催化剂负载量和反应器内循环流量为关键影响因素,利用非密闭型环境舱,分析了反应器降解室内VOCs特性。结果表明,在254 nm和365 nm紫外光源照射下,VOCs的总衰减系数随初始浓度的增加而增大,且254 nm紫外光源照射下的总衰减系数更大。365 nm紫外光源照射时,VOCs的反应有效度随催化剂负载量的增加而增大;254 nm紫外光源照射时,反应有效度受催化剂负载量变化的影响很小。VOCs的转化率随循环流量的增加而增大,而反应速率受循环流量的影响较小;相同的循环流量下,转化率和反应速率均随着VOCs初始浓度增加而增大。由于增设肋片,折流式管状反应器比传统无肋片管状反应器的洁净空气量提升60%,且反应有效度更接近0.5,说明前者的传质-反应速率更加匹配,降解性能明显更优。

English Abstract

参考文献 (17)

目录

/

返回文章
返回