餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标

曹秀芹, 袁海光, 丁浩, 徐国庆. 餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标[J]. 环境工程学报, 2018, 12(7): 2123-2131. doi: 10.12030/j.cjee.201712061
引用本文: 曹秀芹, 袁海光, 丁浩, 徐国庆. 餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标[J]. 环境工程学报, 2018, 12(7): 2123-2131. doi: 10.12030/j.cjee.201712061
CAO Xiuqin, YUAN Haiguang, DING Hao, XU Guoqing. Exploration of optimal organic loading rates and instability indicators in wet anaerobic digestion of kitchen waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2123-2131. doi: 10.12030/j.cjee.201712061
Citation: CAO Xiuqin, YUAN Haiguang, DING Hao, XU Guoqing. Exploration of optimal organic loading rates and instability indicators in wet anaerobic digestion of kitchen waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2123-2131. doi: 10.12030/j.cjee.201712061

餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标

  • 基金项目:

    北京市属高校基本科研业务费专项资金资助

Exploration of optimal organic loading rates and instability indicators in wet anaerobic digestion of kitchen waste

  • Fund Project:
  • 摘要: 为探究餐厨垃圾湿式厌氧消化最佳有机负荷及失稳预警指标,在(36±1) ℃单相连续搅拌条件下进行有机负荷(OLR)梯度实验。通过理论及数学分析确定90%含水率餐厨垃圾湿式厌氧消化的最佳OLR和失稳指标。当OLR(以VS计)为2.94 g?(L?d)-1时,挥发性固体去除率、甲烷产率、容积沼气产率分别为78%、0.58 L?g-1VS、2.99 L?(L?d)-1,此时厌氧反应器达到最佳运行状态。一定浓度的游离氨(FAN)会抑制微生物活性,触发挥发性脂肪酸(VFA)的积累,造成容积沼气产率降低,第36天,当OLR增至3.21 g?(L?d)-1时,FAN浓度升至区域峰值207 mg?L-1,但随后骤降35.9%(39 d),分别造成VFA和挥发性脂肪酸浓度与碳酸氢盐碱度的比值(VFA/TA)从第37天的1 897 mg?L-1、0.22升高至第47天的4 755 mg?L-1、0.73,系统进入抑制稳定状态,最终导致容积沼气产率从第47天的2.66 L?(L?d)-1降至第48天的1.88 L?(L?d)-1,系统恶化。协同分析表明,当VFA和VFA/TA分别达到2 500 mg?L-1和0.35并出现持续上升的现象时,能提前7~8 d对90%含水率餐厨垃圾湿式厌氧消化系统的失稳提出预警。
  • 加载中
  • [1] MORRIS E, SALLY B, MATTHEW C, et al.Life-cycle assessment harmonization and soil science ranking results on food-waste management methods[J].Environmental Science & Technology,2017,51(10):5360-5367 10.1021/acs.est.6b06115
    [2] 周丽丽,杨帆,罗瑞芬,等. 氧化铁对不同有机负荷下餐厨垃圾厌氧消化产气的影响[J]. 环境工程学报,2017,11(7):4258-4264 10.12030/j.cjee.201605109
    [3] MATA-ALCAREZ J.Biomethanization of the organic fraction of municipal solid wastes[J].Water Intelligence Online,2005,4(2):91-105
    [4] 张念瑞,李倩,许曼娟,等.进料频率对餐厨垃圾与剩余污泥中温共发酵系统稳定性的影响[J].环境工程学报,2018,12(2):638-644 10.12030/j.cjee.201707224
    [5] CURRY N, PILLAY P.Biogas prediction and design of a food waste to energy system for the urban environment[J].Renewable Energy,2012,41(2):200-209 10.1016/j.renene.2011.10.019
    [6] TAMPIO E, ERVASTI S, PAAVOLA T, et al.Anaerobic digestion of autoclaved and untreated food waste[J].Waste Management,2014,34(2):370-377 10.1016/j.wasman.2013.10.024
    [7] NAGAO N, TAJIMA N, KAWAI M, et al.Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste[J].Bioresource Technology,2012,118(8):210-218 10.1016/j.biortech.2012.05.045
    [8] KOMILIS D, BARRENA R, GRANDO R L, et al.A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield[J].Reviews in Environmental Science & Bio/Technology,2017,16(2):1-14
    [9] CHEN X, YAN W, SHENG K, et al.Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J].Bioresource Technology,2014,154(3):215-221 10.1016/j.biortech.2013.12.054
    [10] ANGELIDAKI I, AHRING B K.Thermophilic anaerobic digestion of livestock waste: The effect of ammonia[J].Applied Microbiology & Biotechnology,1993,38(4):560-564
    [11] 彭绪亚, 贾传兴, 潘坚,等. 餐厨垃圾单相厌氧消化系统酸化预警指标[J]. 土木建筑与环境工程,2011,33(4):146-150
    [12] LI L, HE Q, WEI Y, et al.Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste[J].Bioresource Technology,2014,171:491-494 10.1016/j.biortech.2014.08.089
    [13] 盛迎雪,曹秀芹,张达飞,等.猪粪干式厌氧消化系统稳定性及其耐氨氮机制分析[J].中国沼气,2017,35(3):39-43
    [14] KOCH K.Calculating the degree of degradation of the volatile solids in continuously operated bioreactors[J].Biomass & Bioenergy,2015,74:79-83 10.1016/j.biombioe.2015.01.009
    [15] HANSEN K H, ANGELIDAKI I, AHRIING B K.Anaerobic digestion of swine manure: Inhibition by ammonia[J].Water Research,1998,32(1):5-12 10.1016/S0043-1354(97)00201-7
    [16] XIANG C, WEI Y, SHENG K, et al.Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J].Bioresource Technology,2014,154(3):215-221 10.1016/j.biortech.2013.12.054
    [17] LI L,QIN H.Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structureand process stability[J].Bioresource Technology,2015,189:113-120 10.1016/j.biortech.2015.04.015
    [18] 夏元亮, 刘程, 吕丹,等. 有机负荷对餐厨单相厌氧消化产甲烷的影响[J]. 环境卫生工程,2014,22(6):66-68
    [19] RAJAGOPAL R, MASSE D I, SINGH G.A critical review on inhibition of anaerobic digestion process by excess ammonia[J].Bioresource Technology,2013,143(17):632-641 10.1016/j.biortech.2013.06.030
    [20] SHI X, JIA L, ZUO J, et al.Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J].Journal of Environmental Sciences,2017,55(5):49-57 10.1016/j.jes.2016.07.006
    [21] MULLER T, WALTER B, WIRTZ A, et al.Ammonium toxicity in bacteria[J].Current Microbiology,2006,52(5):400-406
    [22] 唐波, 李蕾, 何琴,等. 总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报,2016,36(1):210-216 10.13671/j.hjkxxb.2015.0427
    [23] LV F, HAO L, GUAN D, et al.Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics[J].Water Research,2013,47(7):2297-2306 10.1016/j.watres.2013.01.049
    [24] BUJOCZEK G, OLESZKIEWICZ J, SPARLING R, et al.High solid anaerobic digestion of chicken manure[J].Journal of Agricultural Engineering Research,2000,76(1):51-60 10.1006/jaer.2000.0529
    [25] AHRING B K, SANDBERG M, ANGELIDAKI I.Volatile fatty-acids as indicators of process imbalance is anaerobic digesters[J].Applied Microbiology & Biotechnology,1995,43(3):559-565 10.1007/BF00218466
    [26] ZOETEMEYER R J, MATTHIJSEN A J C M, COHEN A, et al.Product inhibition in the acid forming stage of the anaerobic digestion process[J].Water Research,1982,16(5):633-639 10.1016/0043-1354(82)90084-7
    [27] BOE K.Online monitoring and control of the biogas process[J].Archives of Disease in Childhood,2006,59(6):36-44
    [28] LIEW L N, SHI J, LI Y.Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment[J].Bioresource Technology,2011,102(19):8828-8834 10.1016/j.biortech.2011.07.005
  • 加载中
计量
  • 文章访问数:  3097
  • HTML全文浏览数:  2840
  • PDF下载数:  293
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标

  • 1. 北京建筑大学环境与能源工程学院,北京 100044
  • 2. 城市雨水系统与水环境省部共建教育部重点实验室,北京 100044
基金项目:

北京市属高校基本科研业务费专项资金资助

摘要: 为探究餐厨垃圾湿式厌氧消化最佳有机负荷及失稳预警指标,在(36±1) ℃单相连续搅拌条件下进行有机负荷(OLR)梯度实验。通过理论及数学分析确定90%含水率餐厨垃圾湿式厌氧消化的最佳OLR和失稳指标。当OLR(以VS计)为2.94 g?(L?d)-1时,挥发性固体去除率、甲烷产率、容积沼气产率分别为78%、0.58 L?g-1VS、2.99 L?(L?d)-1,此时厌氧反应器达到最佳运行状态。一定浓度的游离氨(FAN)会抑制微生物活性,触发挥发性脂肪酸(VFA)的积累,造成容积沼气产率降低,第36天,当OLR增至3.21 g?(L?d)-1时,FAN浓度升至区域峰值207 mg?L-1,但随后骤降35.9%(39 d),分别造成VFA和挥发性脂肪酸浓度与碳酸氢盐碱度的比值(VFA/TA)从第37天的1 897 mg?L-1、0.22升高至第47天的4 755 mg?L-1、0.73,系统进入抑制稳定状态,最终导致容积沼气产率从第47天的2.66 L?(L?d)-1降至第48天的1.88 L?(L?d)-1,系统恶化。协同分析表明,当VFA和VFA/TA分别达到2 500 mg?L-1和0.35并出现持续上升的现象时,能提前7~8 d对90%含水率餐厨垃圾湿式厌氧消化系统的失稳提出预警。

English Abstract

参考文献 (28)

目录

/

返回文章
返回