再生水补水河道水质的生态修复示范工程及效能分析
Ecological restoration project of water quality in urban river supplied with reclaimed water and its efficiency analysis
-
摘要: 再生水作为生态或景观补水的重要来源,受纳水体水质下降是制约再生水回用的瓶颈。以浙江省宁波市受纳再生水的陆家河为研究对象,分析受纳再生水河道在生态集成技术修复后水体水质的变化特征,探讨生态修复工程的效能及其影响因素。结果表明,在生态修复工程运行后,显著改善受纳再生水河道的水质,氨氮、COD、总磷、CODMn、BOD5等污染负荷年平均削减率分别为69.0%、16.7%、34.3%、7.8%和34.3%。通过对再生水回用参数的研究,当再生水日进水量为4 000 ~6 500 m3,进水的总磷浓度控制在0.6 mg·L-1以下时,能够使研究河段水体具有较好的净化效果。静态经济评价表明,研发的强化消解-生态涵养-生态观测3步生态修复集成技术,工程投资小、运行成本低、处理效果佳,具有较好的环境与经济效益。Abstract: The reclaimed water is an important supply source of ecological or landscape water, resulting in the decline of water quality in the receiving water, which is the bottleneck restricting the reuse of reclaimed water. The Lujia River in Ningbo city, Zhejiang province was introduce to analyze the variation characteristics of water quality of the receiving water body operated with the restoration of the ecological integrated technology, and study the effectiveness and the impact factors of this ecological restoration project. The results showed that the water quality of receiving water of the Lujia River was significantly improved by the ecological restoration project developed by this study. The annual average reduction rates of ammonia nitrogen (NH4+-N), COD, total phosphorus (TP), CODMn and BOD5 were 69%, 16.7%, 34.3%, 7.8% and 34.3%, respectively. Through the study on the parameters of reuse the reclaimed water, when the river intake of the reclaimed water is 4 000 ~6 500 m3, and the TP concentration in the reclaimed water is under 0.6 mg·L-1, it can achieve a better purification effect for the studied river water. The static economic evaluation suggested that the 3 steps ecological restoration integrated technology, including intensive elimination and decomposition of pollutants, ecological conservation and ecological observation, has small investment, low operating cost and good treatment effect, and has better environmental and economic benefits.
-
[1] YI L L, JIAO W T, CHEN X N, et al.An overview of reclaimed water reuse in China [J].Journal of Environmental Science,2011,23(10):1585-1593 10.1016/S1001-0742(10)60627-4 [2] 李昆,魏源送,王健行,等. 再生水回用的标准比较与技术经济分析[J]. 环境科学学报,2014,34(7):1635-1653 [3] 陈卫平. 美国加州再生水利用经验剖析及对我国的启示[J]. 环境工程学报,2011,5(5):961-966 [4] 范育鹏,陈卫平. 北京市再生水利用生态环境效益评估[J]. 环境科学,2014,35(10):4003-4008 [5] 李健. 海河流域再生水利用现状及效益分析[J]. 水科学与工程技术,2012,36(2):53-55 [6] 刘祥举,李育宏,于建国. 我国再生水水质标准的现状分析及建议[J]. 中国给水排水,2011,27(24):23-25 [7] 中华人民共和国国家质量监督检验检疫总局. 城市污水再生利用 城市杂用水水质:GB 18920-2002 [S]. 北京:中国标准出版社,2003 [8] 中华人民共和国国家质量监督检验检疫总局. 城市污水再生利用 景观环境用水水质:GB 18921-2002 [S]. 北京:中国标准出版社,2003 [9] 中华人民共和国国家质量监督检验检疫总局. 城市污水再生利用 工业用水水质:GB 19923-2005 [S]. 北京:中国标准出版社,2006 [10] 国家环境保护总局,国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838-2002[S].北京:中国环境科学出版社,2002 [11] 吴兴海,李咏梅. 碳氮比对不同滤料反硝化滤池脱氮效果的影响[J]. 环境工程学报,2017,11(1):55-62 10.12030/j.cjee.201509116 [12] 周艾文,金腊华,魏臻,等. 生物陶粒MBBR同步硝化反硝化脱氮试验研究[J]. 工业用水与废水,2010,41(5):30-34 [13] 刘芳. 城市受污染河道水体的生物修复-基于生物膜除磷过程的研究[D].上海:上海师范大学,2008 [14] 尹军,王建辉,王雪峰,等. 污水生物除磷若干影响因素分析[J]. 环境工程学报,2007,1(4):6-11 [15] 张晶,刘春,张静,等. 微气泡曝气方式对生物膜反应器运行性能的影响[J]. 环境工程学报,2017,11(4):2177-2182 10.12030/j.cjee.201601041 [16] 马士禹,张云艳,唐建国,等. 微纳气液界面水环境修复技术的原理与应用[J]. 净水技术,2014,33(4):19-24 [17] 王永磊,王文浩,代莎莎,等. 微纳米气泡发生机理及其应用研究进展[J]. 山东建筑大学学报,2017,32(5),474-480 [18] 中华人民共和国国家治理监督检验检疫总局,中国国家标准化管理委员会. 工业废水的试验方法 鱼类急性毒性试验:GB 21814-2008[S].北京:中国标准出版社,2008 [19] 李昆,魏源送,王健行,等. 再生水回用的标准比较与技术经济分析[J]. 环境科学学报,2014,34(7):1635-1653
计量
- 文章访问数: 2909
- HTML全文浏览数: 2654
- PDF下载数: 346
- 施引文献: 0