CANON工艺中不同NH4+-N浓度条件下N2O释放特征

付昆明, 刘凡奇, 王会芳, 付巢, 李慧. CANON工艺中不同NH4+-N浓度条件下N2O释放特征[J]. 环境工程学报, 2018, 12(6): 1657-1666. doi: 10.12030/j.cjee.201712010
引用本文: 付昆明, 刘凡奇, 王会芳, 付巢, 李慧. CANON工艺中不同NH4+-N浓度条件下N2O释放特征[J]. 环境工程学报, 2018, 12(6): 1657-1666. doi: 10.12030/j.cjee.201712010
FU Kunming, LIU Fanqi, WANG Huifang, FU Chao, LI Hui. Characteristic of nitrous oxide emission under different ammonia conditions in CANON process[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1657-1666. doi: 10.12030/j.cjee.201712010
Citation: FU Kunming, LIU Fanqi, WANG Huifang, FU Chao, LI Hui. Characteristic of nitrous oxide emission under different ammonia conditions in CANON process[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1657-1666. doi: 10.12030/j.cjee.201712010

CANON工艺中不同NH4+-N浓度条件下N2O释放特征

  • 基金项目:

    北京市教育委员会科技发展计划项目(SQKM201710016006)

    国家自然科学基金资助项目(51308025)

Characteristic of nitrous oxide emission under different ammonia conditions in CANON process

  • Fund Project:
  • 摘要: 在温度为(30±1)℃,以人工配置无机高氨氮废水为进水的条件下,采用序批式生物膜CANON反应器(陶粒为填料),研究了不同NH4+-N浓度条件下,CANON工艺脱氮过程中N2O的释放特征。研究表明:通过控制NH4+-N浓度分别为200、300、400和500 mg·L-1,获得了84.69%、80.58%、78.16%和90.09%的TN去除率,对应的TN去除负荷分别为1.42、1.48、1.52、1.82 kg·(m3·d)-1,CANON反应器脱氮性能非常稳定;反应过程中,对应的N2O释放总量分别为6.44、10.34、13.45、19.53 mg,即随着初始NH4+-N浓度的增加,N2O的释放总量逐渐增加;而N2O的释放率虽然也有增加,但增加幅度并不显著,占TN损失的比例分别为6.06%、7.00%、7.06%、7.15%;在一个反应周期内,N2O与NO2--N均呈现先升高后降低的变化趋势,但无因果关系。CANON反应器产生大量N2O 的主要原因,并非源于NO2--N的积累,也与FNA无关,而是羟氨积累造成的。
  • 加载中
  • [1] 王长科,罗新正,张华. 全球增温潜势和全球温变潜势对主要国家温室气体排放贡献估算的差异[J]. 气候变化研究进展,2013,9(1):49-54
    [2] Intergovernmental Panel on Climate Change (IPCC).Climate Change 2001: The Science of Climate Change[M].Cambridge: Cambridge University Press, 2001
    [3] CONRAD R.Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J].Microbiological Reviews,1996,60(4):609-640
    [4] BO G, FRETTE L, WESTERMANN P.Dynamics of N2O production from activated sludge[J].Water Research,1998,32(7):2113-2121 10.1016/S0043-1354(97)00456-9
    [5] KAMPSCHREUR M J, WR V D S, WIELDERS H A, et al.Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment[J].Water Research,2008,42(3):812-826 10.1016/j.watres.2007.08.022
    [6] FOLEY J, DE H D, YUAN Z, et al.Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J].Water Research,2010,44(3):831-844 10.1016/j.watres.2009.10.033
    [7] FUX C, BOEHLER M, HUBER P, et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306 10.1016/S0168-1656(02)00220-1
    [8] LIANG Z, LIU J.Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system[J].Journal of Hazardous Materials,2008,151(1):202-212 10.1016/j.jhazmat.2007.05.068
    [9] JOSS A, SALZGEBER D, EUGSTER J, et al.Full-scale nitrogen removal from digester liquid with partial nitritation and Anammox in one SBR[J].Environmental Science & Technology,2009,43(14):5301-5306 10.1021/es900107w
    [10] SUGIMOTO T, TSUCHIMOCHI H, MCGREGOR C G, et al.Nitrous oxide emission during wastewater treatment[J].Water Research,2009,43(17):4093-4103 10.1016/j.watres.2009.03.001
    [11] LIU M, LIU T, PENG Y, et al.Effect of salinity on N2O production during shortcut biological nitrogen removal from landfill leachate[J].Journal of Bioscience and Bioengineering,2014,117(5):582-590 10.1016/j.jbiosc.2013.10.011
    [12] 杨姣玲,高大文,彭永臻. 温度对颗粒污泥脱氮过程中N2O产生量的影响[J]. 中国环境科学,2010,30(12):1622-1626
    [13] ZHANG H, LI W, CAI Z, et al.Landfill CH4 oxidation and N2O emissions by aged refuse: Effects of wastewater NH4+-N incubation, heavy metals and pH[J].Ecological Engineering,2013,53:243-249 10.1016/j.ecoleng.2012.12.052
    [14] WEISKE A, BENCKISER G, OTTOW J C G.Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments[J].Nutrient Cycling in Agroecosystems,2001,60(1):57-64 10.1023/A:1012669500547
    [15] WANG C, DANNENMANN M, MEIER R, et al.Inhibitory and side effects of acetylene (C2H2) and sodium chlorate (NaClO3) on gross nitrification, gross ammonification and soil-atmosphere exchange of N2O and CH4 in acidic to neutral montane grassland soil[J].European Journal of Soil Biology,2014,65:7-14 10.1016/j.ejsobi.2014.08.006
    [16] OKABE S, OSHIKI M, TAKAHASHI Y, et al.N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules[J].Water Research,2011,45(19):6461-6470 10.1016/j.watres.2011.09.040
    [17] 田琳,孔强,张建. 不同氨氮浓度对部分亚硝化过程中N2O释放的影响[J]. 安徽农业科学,2012,40(33):16325-16327
    [18] PIJUAN M, TORA J, RODRIGUEZCABALLERO A, et al.Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater[J].Water Research,2014,49(1):23-33 10.1016/j.watres.2013.11.009
    [19] 付昆明,王会芳,苏雪莹,等. 初始pH值对序批式CANON工艺脱氮效果和N2O释放的影响[J]. 环境科学,2016,37(11):4261-4267 10.13227/j.hjkx.201604221
    [20] 国家环境保护总局.水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社,2002:63-64
    [21] ANTHONISEN A C, LOEH R C, PRAKASAM T B, et al.Inhibition of nitrification by ammonia and nitrous-acid[J].Journal Water Pollution Control Federation,1976,48(5):835-852
    [22] SLIEKERS A O, DERWORT N, GOMEZ J L, et al.Completely autotrophic nitrogen removal over nitrite in one single reactor[J].Water Research,2002,36(10):2475-2482 10.1016/S0043-1354(01)00476-6
    [23] SHISKOWSKI D M, MAVINIC D S.The influence of nitrite and pH (nitrous acid) on aerobic-phase, autotrophic N2O generation in a wastewater treatment bioreactor[J].Journal of Environmental Engineering & Science,2006,5(4):273-283 10.1139/s05-034
    [24] THIRD K A, PAXMAN J, SCHMID M, et al.Treatment of nitrogen-rich wastewater using partial nitrification and Anammox in the CANON process[J].Water Science and Technology,2005,52(4):47-54
    [25] 付昆明,左早荣,仇付国. 陶粒CANON反应器的接种启动与运行[J]. 环境科学,2014,35(3):995-1001
    [26] 张杰,付昆明,曹相生,等. 序批式生物膜CANON工艺的运行与温度的影响[J]. 环境科学,2009,29(8):850-855
    [27] JIA W, LIANG S, ZHANG J, et al.Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: Sources and mechanisms[J].Bioresource Technology,2013,136:444-451 10.1016/j.biortech.2013.02.117
    [28] KIM S W, MIYAHARA M, FUSHINOBU S, et al.Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J].Bioresource Technology,2010,101(11):3958-3963 10.1016/j.biortech.2010.01.030
    [29] POTH M, FOCHT D D.Kinetic analysis of N2O production by Nitrosomonas europaea:An examination of nitrifier denitrification[J].Applied & Environmental Microbiology,1985,49(5):1134-1141
    [30] ZHOU Y, OEHMEN A, LIM M, et al.The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J].Water Research,2011,45(15):4672-4682 10.1016/j.watres.2011.06.025
    [31] 孙世昌. 城市污水处理典型工艺N2O的释放特征及减排策略研究[D]. 北京:北京林业大学,2014
    [32] DECLIPPELEIR C H, VLAEMINCK S E, DE W F, et al.One-stage partial nitritation/anammox at 15 °C on pretreated sewage: Feasibility demonstration at lab-scale[J].Applied Microbiology and Biotechnology,2013,97(23):10199-10210 10.1007/s00253-013-4744-x
    [33] ALI M, RATHNAYAKE R M L D, ZHANG L, et al.Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor[J].Water Research,2016,102(Supplement C):147-157 10.1016/j.watres.2016.06.034
  • 加载中
计量
  • 文章访问数:  3146
  • HTML全文浏览数:  2753
  • PDF下载数:  336
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18

CANON工艺中不同NH4+-N浓度条件下N2O释放特征

  • 1. 北京建筑大学环境与能源工程学院,城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044
基金项目:

北京市教育委员会科技发展计划项目(SQKM201710016006)

国家自然科学基金资助项目(51308025)

摘要: 在温度为(30±1)℃,以人工配置无机高氨氮废水为进水的条件下,采用序批式生物膜CANON反应器(陶粒为填料),研究了不同NH4+-N浓度条件下,CANON工艺脱氮过程中N2O的释放特征。研究表明:通过控制NH4+-N浓度分别为200、300、400和500 mg·L-1,获得了84.69%、80.58%、78.16%和90.09%的TN去除率,对应的TN去除负荷分别为1.42、1.48、1.52、1.82 kg·(m3·d)-1,CANON反应器脱氮性能非常稳定;反应过程中,对应的N2O释放总量分别为6.44、10.34、13.45、19.53 mg,即随着初始NH4+-N浓度的增加,N2O的释放总量逐渐增加;而N2O的释放率虽然也有增加,但增加幅度并不显著,占TN损失的比例分别为6.06%、7.00%、7.06%、7.15%;在一个反应周期内,N2O与NO2--N均呈现先升高后降低的变化趋势,但无因果关系。CANON反应器产生大量N2O 的主要原因,并非源于NO2--N的积累,也与FNA无关,而是羟氨积累造成的。

English Abstract

参考文献 (33)

目录

/

返回文章
返回