不同尺度潜流人工湿地对污染河水的净化机制

沈莹, 郑于聪, 王晓昌, 贾策, 赵梦云. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675. doi: 10.12030/j.cjee.201711009
引用本文: 沈莹, 郑于聪, 王晓昌, 贾策, 赵梦云. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12(6): 1667-1675. doi: 10.12030/j.cjee.201711009
SHEN Ying, ZHENG Yucong, WANAG Xiaochang, JIA Ce, ZHAO Mengyun. Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1667-1675. doi: 10.12030/j.cjee.201711009
Citation: SHEN Ying, ZHENG Yucong, WANAG Xiaochang, JIA Ce, ZHAO Mengyun. Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1667-1675. doi: 10.12030/j.cjee.201711009

不同尺度潜流人工湿地对污染河水的净化机制

  • 基金项目:

    国家科技重大专项 (2014ZX07305-002-01)

    陕西省教育厅重点实验室科研计划项目(17JS078)

    中国博士后科学基金第61批面上项目 (2017M613290XB)

Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water

  • Fund Project:
  • 摘要: 为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。
  • 加载中
  • [1] ROZKOSNY M, KRISKA M, ?ALEK J, et al.Natural technologies of wastewater treatment[R].Slovakia: Global Water Partnership Central and Eastern Europe,2014:98-101
    [2] 曹笑笑, 吕宪国, 张仲胜, 等. 人工湿地设计研究进展[J]. 湿地科学,2013,11(1):121-128
    [3] 贾丽娜, 张发宇, 柯凡, 等. 复合人工湿地对低污染城市河流的深度净化效果[J]. 中国给水排水,2016,32(23):80-84
    [4] XIE E, DING A Z, ZHENG L, et al.Seasonal variation in populations of nitrogen transforming bacteria and correlation with nitrogen removal in a full-scale horizontal flow constructed wetland treating polluted river water[J].Geomicrobiology Journal,2016,33:338-346
    [5] THOMAS R, GOUGH R, FREENAN C.Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product[J].Ecological Engineering,2017,106:415-422
    [6] 王俊锋, 宋新山, 严登明, 等. 潜流人工湿地水动力学研究方法进展[J]. 环境科学与技术,2015,38(8):75-79
    [7] 刘红美, 李春杰, 吴德意, 等. 基质强化型潜流人工湿地净化景观水的研究[J]. 中国给水排水,2013,29(1):6-10
    [8] BARCO A, BORIN M.Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment[J].Ecological Engineering,2017,107:160-171
    [9] 常军军, 吴苏青, 梁康, 等. 复合垂直流人工湿地微生物特征对典型污水的响应差异[J]. 环境科学研究,2016,29(8):1200-1206
    [10] 熊家晴, 李珊珊, 葛媛, 等. 处理高污染河水垂直流人工湿地微生物群落特性[J]. 环境工程学报,2017,11(3):1959-19651 10.12030/j.cjee.201511160
    [11] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2005:243-284
    [12] 鲁如坤. 土壤农业化学分析方法[M]. 2版. 北京: 中国农业出版社,1992:244-278
    [13] 丁怡, 王玮, 宋新山, 等. 人工湿地在水质净化中的应用及研究进展[J]. 工业水处理,2017,37(3):6-9
    [14] HUA Y M, PENG L, ZHANG S H, et al.Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater[J].Ecological Engineering,2017,108:70-77
    [15] GAO Y, XIE Y W, ZHANG Q, et al.Intensified nitrate and phosphorus removal in an electrolysis-integrated horizontal subsurface-flow constructed wetland[J].Water Research,2017,108:39-45
    [16] CHANG J J, WU S Q, LIANG K, et al.Comparative study of microbial community structure in integrated vertical-flow constructed wetlands for treatment of domestic and nitrified wastewater[J].Environmental Science and Pollution Research,2015,22:3518-3527 10.1007/s11356-014-3594-0
    [17] GUAN W, YIN M, HE T, et al.Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J].Environmental Science and Pollution Research,2015,22:16202-16209
    [18] LUCA G A D, MAINE M A, MUFARREGE M M, et al.Phosphorus distribution pattern in sediments of natural and constructed wetlands[J].Ecological Engineering,2017,108:227-233
    [19] JOHANSSON L.The use of LECA (light expanded clay aggregates) for the removal of phosphorus from wastewater[J].Water Science and Technology,1997,35(5):87-93
    [20] 张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报,2016,25(2):292-299
    [21] 李怀正, 叶建锋, 徐祖信. 几种经济型人工湿地基质的除污效能分析[J]. 中国给水排水,2007,23(19):27-30
    [22] PARK J H, KIM S H, DELAUNE R D, et al.Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands[J].Ecological Engineering,2016,95:612-621
    [23] LI H B, LI Y H, GONG Z Q, et al.Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate [J].Ecological Engineering,2013,53:39-45
    [24] TAKAICH S, MAOKA T, TAKASAKI K, et al.Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes) identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2’-dirhamnoside[J].Microbiology,2010,156:757-763
    [25] LIU H, LU Q, WANG Q, et al.Isolation of a bacterial strain, Acinetobacter sp.from centrate wastewater and study of its cooperation with algae in nutrients removal[J].Bioresource Technology,2017,235:59-69
    [26] PAUL E A, CLARK F E.Soil Microbiology and Biochemistry[M]. 2nd ed.San Diego, California: Academic Press,1996:340
    [27] GRANT W D, LONG P E.Environmental Microbiology[M].Glasgow: Blackie and Son,1981
    [28] HALEEN P G, HENRICUS T S B.Isolation of thermophilic Desulfotomaculm strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp[J].International Journal of Systematic Bacteriology,2003,53:1223-1229
    [29] 高会杰, 黎元生. 短程反硝化菌株FDN-1的分离鉴定及其脱氮性能[J]. 生物学通报,2013,48(12):56-58
    [30] DONG X, REDDY G B.Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J].Bioresource Technology,2010,101(4):1175-1182
    [31] 朱砺之, 黄娟, 傅大放, 等. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程,2012,19(2):26-30
    [32] SAEED T, SUN G.A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J].Journal of Environmental Management,2012,112:429-448
    [33] VYMAZAL J.The use of subsurface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J].Ecological Engineering,2002,18:633-646
    [34] VYMAZAL J.Removal of nutrients in various types of constructed wetlands[J].Science of the Total Environment,2007,380:48-65
    [35] WU H M, ZHANG J, LI P Z, et al.Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J].Ecological Engineering,2011,37:560-568
    [36] TANNER C C.Plants for constructed wetland treatment systems:A comparison of the growth and nutrient uptake of eight emergent species[J].Ecological Engineering,1996,7(1):59-83
  • 加载中
计量
  • 文章访问数:  4013
  • HTML全文浏览数:  3593
  • PDF下载数:  358
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18

不同尺度潜流人工湿地对污染河水的净化机制

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
基金项目:

国家科技重大专项 (2014ZX07305-002-01)

陕西省教育厅重点实验室科研计划项目(17JS078)

中国博士后科学基金第61批面上项目 (2017M613290XB)

摘要: 为了揭示潜流人工湿地对污染河水的净化机制,通过构建实验室规模和中试规模2种尺度的人工湿地,系统分析了人工湿地净化污染河水过程中的基质特性、微生物特性和植物作用。结果表明,2种尺度人工湿地对悬浮固体(SS 95.86%,94.74%)和有机物(COD 85.29%,80.41%;BOD5 90.60%,89.99%)的去除效果相近,而实验室规模湿地对营养物的去除效果(TN 30.13%,TP 76.89%)优于中试规模湿地(TN 20.27%,TP 52.45%)。实验室规模人工湿地的微生物群落多样性和微生物数量更高,并且具有能够脱氮和降解有机物的特属优势菌种黄杆菌和金黄杆菌。中试规模人工湿地能够更好地为植物生长提供适宜的环境条件,中试规模湿地中的植物生物量(1.47 kg·m-2)高于实验室规模湿地(1.12 kg·m-2),而且植物在湿地氮磷去除中的贡献率(TN 23.55%,TP 8.80%)也高于实验室规模湿地(TN 11.03%,TP 4.46%)。

English Abstract

参考文献 (36)

目录

/

返回文章
返回