废旧三元锂电池正极材料的金属浸出
Metal leaching from waste ternary lithium battery cathode materials
-
摘要: 三元锂电池正极材料中含有大量锰及其他有价金属元素,具有极高的回收利用价值。采用马弗炉加热至530 ℃,恒温1 h,去除三元锂电池正极材料上的聚偏氟乙烯和乙炔黑。用1 mol·L-1的稀硫酸与质量分数为30%的双氧水超声作用10 min将正极集流体洗涤干净。采用1 mol·L-1的稀硫酸将铝箔洗涤并回收。将2部分洗涤液置于90 ℃条件下反应60 min后加入过二硫酸钾,继续反应120 min,制得α-MnO2颗粒。结果表明,锰回收率达到99.5%,镍、钴和锂元素的浸出率分别可达99.8%、99.7%和99.8%。实现三元锂电池的正极材料中镍钴锂的浸出及锰的回收。Abstract: Ternary lithium battery cathode materials have extremely high recycling value because they contain a large amount of manganese and other valuable metal elements. The cathode materials of the waste ternary lithium battery were heated to a temperature of 530 °C for 1 h in a muffle furnace to remove polyvinylidene fluoride and acetylene black. The positive electrode current collector was washed with 1 mol·L-1 dilute sulfuric acid and hydrogen peroxide with a mass fraction of 30% for 10 minutes. Aluminum foil was washed with 1 mol·L-1 dilute sulfuric acid and collected. The potassium persulfate was added into the mixture after they were mixed at at 90 ℃ for 60 minutes. The reaction was continued for 120 minutes to obtain α-MnO2 particles. The results showed that the manganese recovery rate reached 99.5%, and the leaching rates of nickel, cobalt, and lithium were 99.8%, 99.7% and 99.8%, respectively. Therefore, it achieved the leaching and recovery of lithium, nickel, cobalt, and manganese from waste ternary lithium battery cathode material.
-
Key words:
- waste ternary lithium batteries /
- cathode materials /
- α-MnO2 /
- leaching
-
[1] 蔡乐,王继芬.废旧汽车三元锂电池安全放电影响因素探究[J].上海第二工业大学报,2017,34(2):101-105 10.19570/j.cnki.jsspu.2017.02.004 [2] 杜小红,李凡群.汽车用动力锂电池研究[J].电源技术,2014,38(7):1240-1242 [3] 朱冠楠,王英,黄晨东.车用动力电池材料的研究分析[J].上海汽车,2014(8):54-58 [4] 杨未宏.新能源汽车行业格局或生变化[J].中国经济信息,2017(8):50-51 [5] 卫寿平,孙杰,周添,等.废旧锂离子电池中金属材料回收技术研究进展[J].储能科学与技术,2017,6(6):1196-1207 [6] WANG R C,LIN Y C,WU S H.A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries[J].Hydrometallurgy,2009, 99(3/4):194-201 10.106/j.hydromet.2009.08.005 [7] 陈亮,唐新村,张阳,等.从废旧锂离子电池中分离回收钴镍锰[J]. 中国有色金属学报 ,2011,21(5):1192-1198 [8] CHEN X P, ZHOU T.Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media[J].Waste Management & Research, 2014,32(11):1083-1093 10.1177/0734242X14557380 [9] 刘兴芝,薛红.烷基硫代磷酸钴的性能及钴镍分离研究[J].稀有金属,1997(5):23-26 [10] 曹锡章, 宋天佑, 王杏乔,等. 无机化学:下册[M].3版.北京:高等教育出版社,2006:975-983 [11] 王春雨,侯永江,李博,等.纳米二氧化锰制备方法的研究进展[J].现代化工, 2016,36(4):13-17 [12] 王歌,赵晓昱,张瑾,等.不同晶型二氧化锰的可控制备条件研究[J]. 无机盐工业,2017,49(8):14-18 [13] 李哲,李涛.α型二氧化锰的制备及电化学性能研究[J]. 粉末冶金工业,2016,26(6):15-19 [14] 刘伟峰,孙志英,陈月霞,等.聚偏氟乙烯(PVDF)树脂特性与加工应用[J].信息记录材料,2013,14(5):61-64 [15] FOUAD O A,FARGHALY F I,BAHGAT M.A novel approach for synthesis of nanocrystalline γ-LiAlO2, from spent lithium-ion batteries[J].Journal of Analytical & Applied Pyrolysis,2007,78(1):65-69 10.1016/j.jaap.2006.04.002
计量
- 文章访问数: 4273
- HTML全文浏览数: 3862
- PDF下载数: 447
- 施引文献: 0