餐厨垃圾厌氧干发酵产氢特性及其调控

高常卉, 黄振兴, 赵明星, 席克忠, 施万胜, 阮文权. 餐厨垃圾厌氧干发酵产氢特性及其调控[J]. 环境工程学报, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
引用本文: 高常卉, 黄振兴, 赵明星, 席克忠, 施万胜, 阮文权. 餐厨垃圾厌氧干发酵产氢特性及其调控[J]. 环境工程学报, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
GAO Changhui, HUANG Zhenxing, ZHAO Mingxing, XI Kezhong, SHI Wansheng, RUAN Wenquan. Hydrogen generation and its adjustment from food wastes by dry fermentation[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
Citation: GAO Changhui, HUANG Zhenxing, ZHAO Mingxing, XI Kezhong, SHI Wansheng, RUAN Wenquan. Hydrogen generation and its adjustment from food wastes by dry fermentation[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186

餐厨垃圾厌氧干发酵产氢特性及其调控

  • 基金项目:

    国家自然科学基金资助项目(51508230,21506076)

    国家科技支撑计划项目(2013BAB11B02)

    河南省科技开发合作项目(172106000030)

Hydrogen generation and its adjustment from food wastes by dry fermentation

  • Fund Project:
  • 摘要: 采用干发酵技术以餐厨垃圾为底物进行产氢实验,比较不同TS(20%、22%、24%和30%)条件下的产氢情况,修正的Gompertz模型能够较好地拟合餐厨垃圾干发酵过程中的产氢情况(R2>0.97),获得最佳的TS为22%。反应1.5 d后,累积产氢量出现下降,发现反应体系内存在耗氢现象,微生物群落结构显示TS 22%组优势菌属为Lactobacillus。随后,在TS含量为22%的条件下,添加氯仿对耗氢进行抑制。结果表明:添加0.05%的氯仿能够显著提高产氢量,最大累积产氢量为29.66 mL·g-1(TS),是对照组的1.29倍;氯仿添加量为0.05%时,碳水化合物的降解率最高,达到43.07%;氯仿不仅会对耗氢产生抑制,同时也会抑制产氢,适宜浓度的氯仿能够提高餐厨垃圾干发酵产氢,最佳添加量为0.05%;餐厨垃圾干发酵产氢过程为丁酸型发酵,主要的液相末端发酵产物为乙酸和丁酸。
  • 加载中
  • [1] 郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报,2017,11(2):673-682 10.12030 /j.cjee.201508159
    [2] HAN W, YE M,ZHU AJ,et al.A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste[J].Journal of Cleaner Production,2016,112:3744-3749 10.1016/j.jclepro.2015.08.072
    [3] 林艺芸.预处理污泥与餐厨垃圾联合产氢试验研究[D]. 福州: 福建师范大学,2008
    [4] ANGERIZCAMPOY R, ALVAREZGALLEGO C J, ROMEROGARCIA L I.Thermophilic anaerobic co-digesti-on of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production[J].Bioresource Technology,2015,194(1):291-296 10.1016/j.biortech.2015.07.011
    [5] 李燕红, 林钰, 杏艳, 等. 农作物秸秆废弃物厌氧发酵生物制氢的研究[J]. 环境科学与技术,2006,29(11):8-9 10.3969/j.issn.1003-6504.2006.11.004
    [6] 马磊, 王德汉, 曾彩明. 餐厨垃圾的干式厌氧消化处理技术初探[J]. 中国沼气,2007,25(1):27-30 10.3969/j.issn.1000-1166.2007.01.007
    [7] ESAMADONY M, TAWFIK A.Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production[J].Bioresource Technology,2015,191:157-165 10.1016/j.biortech.2015.05.017
    [8] ESAMADONY M, TAWFIK A.Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor[J].Bioresource Technology,2015, 196:9-16 10.1016/j.biortech.2015.07.048
    [9] XIAO B, LIU J.Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation[J].Journal of Hazardous Materials,2009,168(1):163-167 10.1016/j.jhazmat.2009.02.008
    [10] ESAMADONY M, TAWFIK A, SUZUKI M.Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion[J].Applied Energy, 2015,149:272-282 10.1016/j.apenergy.2015.03.127
    [11] 陆源, 谢育红, 郑育毅, 等. 不同热处理温度对污泥厌氧发酵产氢的影响[J]. 环境工程学报,2013,7(12):4995-5000
    [12] 赵明星, 严群, 阮文权, 等. 丁酸胁迫对产氢污泥以厨余为底物的产氢影响[J]. 环境工程学报,2010,4(11):2603-2607
    [13] 魏自民, 夏天明, 李鸣晓, 等. 不同湿热预处理条件对餐厨垃圾厌氧发酵产氢的影响[J]. 环境科学研究,2013,26(11):1239-1245
    [14] 昌盛, 李建政, 李伟光, 等. 厌氧活性污泥发酵制氢系统中的同型产乙酸作用及其控制[J]. 太阳能学报,2011,32(4):439-445
    [15] 李建政, 许一平, 张立国, 等. 厌氧活性污泥发酵制氢系统中的同型产乙酸菌及耗氢作用[J]. 科技导报,2011,29(24):29-32 10.3981/j.issn.1000-7857.2011.24.002
    [16] HU B, CHEN S.Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J].International Journal of Hydrogen Energy,2007,32(15):3266-3273 10.1016/j.ijhydene.2007.03.005
    [17] 中华人民共和国建设部. 城市污水处理厂污泥检验方法[M].3版. 北京: 中国标准出版社,2006
    [18] 王福荣. 生物工程分析与检验[M]. 北京: 中国轻工业出版社,2006
    [19] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社,2002
    [20] 刘晓风, 廖银章, 刘克鑫. 城市有机垃圾厌氧干发酵研究[J]. 太阳能学报,1995,16(2):170-173
    [21] TYAGI V K, ANGERIZ C R, ALVAREZGALLEGO C J, et al.Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge-optimization of treatment conditions[J].Bioresource Technology,2014,164(7):408-415 10.1016/j.biortech.2014.05.013
    [22] LAY J J.A mathematical model for methane production from a landfill bioreactor treating the organic fraction of municipal solid wastes[J]. 1997,32:123-138
    [23] LAY J J.Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose[J].B-iotechnology & Bioengineering,2001,74(4):280-287
    [24] 张笑, 蔡玮玮, 王利红, 等. 固含率对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响[J]. 农业环境科学学报,2013,32(5):1078-1084
    [25] 陈倩倩, 刘芸, 刘波, 等. 植物乳杆菌Lactobacillus plantarum(FJAT-7926)生物学特性研究[J]. 福建农业学报,2014,27(7):678-681
    [26] 祁昕. 乳杆菌发酵工业废料海藻残渣产有机酸的研究[D]. 哈尔滨: 东北农业大学,2015
    [27] 赵丹. 餐厨垃圾制氢体系产氢菌分离及微生物群落结构研究[D]. 上海: 华东师范大学,2009
    [28] 苏晓煜. 产氢系统中的产氢产乙酸菌群强化及同型产乙酸菌群抑制[D]. 哈尔滨: 哈尔滨工业大学,2011
    [29] 金大为, 孙庆业, 石先阳. 氯仿处理厌氧污泥发酵制氢中微生物多样性的解析[J]. 微生物学通报,2010,37(6):811-816
    [30] TAWFIK A, ELQELISH M, SALEM A.Efficient anaerobic co-digestion of municipal food waste and kitchen wastewater for bio-hydrogen production[J].International Journal of Green Energy,2014,12(12):1301-1308 10.1080/15435075.2014.909357
    [31] 李明, 牛冬杰, 赵由才, 等. 固体废物厌氧暗发酵生物产氢技术进展[J]. 环境科学与技术,2009,32(3):62-66 10.3969/j.issn.1003-6504.2009.03.016
    [32] 刘广民, 董永亮, 薛建良, 等. 果蔬废弃物厌氧消化特征及固体减量研究[J]. 环境科学与技术,2009,32(3):27-30 10.3969/j.issn.1003-6504.2009.03.007
    [33] 刘盛萍, 金杰, 吴克, 等. 固含量对生物废物干式厌氧消化的影响[J]. 环境卫生工程,2008,16(5):59-62 10.3969/j.issn.1005-8206.2008.05.018
    [34] 王勇, 任南琪, 孙寓姣, 等. 乙醇型发酵与丁酸型发酵产氢机理及能力分析[J]. 太阳能学报,2002,23(3):366-373 10.3321/j.issn:0254-0096.2002.03.021
    [35] 左宜, 左剑恶, 张薇. 利用有机物厌氧发酵生物制氢的研究进展[J]. 环境科学与技术,2004,27(1):97-99 10.3969/j.issn.1003-6504.2004.01.041
    [36] 宋佳秀, 任南琪, 安东, 等. 产酸相发酵类型的制氢转化规律及比较[J]. 净水技术,2006,25(6):55-59 10.3969/j.issn.1009-0177.2006.06.014
    [37] ESAMADONY M, TAWFIK A, DANIAL A, et al.Optimization of hydrogen production from organic fraction of municipal solid waste (OFMSW) dry anaerobic digestion with analysis of microbial community[J].International Journal of Energy Research,2015,39(7):929-940 10.1002/er.3297
  • 加载中
计量
  • 文章访问数:  2954
  • HTML全文浏览数:  2578
  • PDF下载数:  415
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18
高常卉, 黄振兴, 赵明星, 席克忠, 施万胜, 阮文权. 餐厨垃圾厌氧干发酵产氢特性及其调控[J]. 环境工程学报, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
引用本文: 高常卉, 黄振兴, 赵明星, 席克忠, 施万胜, 阮文权. 餐厨垃圾厌氧干发酵产氢特性及其调控[J]. 环境工程学报, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
GAO Changhui, HUANG Zhenxing, ZHAO Mingxing, XI Kezhong, SHI Wansheng, RUAN Wenquan. Hydrogen generation and its adjustment from food wastes by dry fermentation[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186
Citation: GAO Changhui, HUANG Zhenxing, ZHAO Mingxing, XI Kezhong, SHI Wansheng, RUAN Wenquan. Hydrogen generation and its adjustment from food wastes by dry fermentation[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1843-1852. doi: 10.12030/j.cjee.201711186

餐厨垃圾厌氧干发酵产氢特性及其调控

  • 1. 江南大学环境与土木工程学院, 无锡 214122
  • 2. 江南大学江苏省厌氧生物技术重点实验室, 无锡 214122
  • 3. 郑州侨联生物能源有限公司, 郑州 450001
基金项目:

国家自然科学基金资助项目(51508230,21506076)

国家科技支撑计划项目(2013BAB11B02)

河南省科技开发合作项目(172106000030)

摘要: 采用干发酵技术以餐厨垃圾为底物进行产氢实验,比较不同TS(20%、22%、24%和30%)条件下的产氢情况,修正的Gompertz模型能够较好地拟合餐厨垃圾干发酵过程中的产氢情况(R2>0.97),获得最佳的TS为22%。反应1.5 d后,累积产氢量出现下降,发现反应体系内存在耗氢现象,微生物群落结构显示TS 22%组优势菌属为Lactobacillus。随后,在TS含量为22%的条件下,添加氯仿对耗氢进行抑制。结果表明:添加0.05%的氯仿能够显著提高产氢量,最大累积产氢量为29.66 mL·g-1(TS),是对照组的1.29倍;氯仿添加量为0.05%时,碳水化合物的降解率最高,达到43.07%;氯仿不仅会对耗氢产生抑制,同时也会抑制产氢,适宜浓度的氯仿能够提高餐厨垃圾干发酵产氢,最佳添加量为0.05%;餐厨垃圾干发酵产氢过程为丁酸型发酵,主要的液相末端发酵产物为乙酸和丁酸。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回