Cu/SAPO-34 对模拟烟气中零价汞的脱除性能

宗晨曦, 纪蕾朋, 陈奎续, 徐浩淼, 瞿赞, 晏乃强. Cu/SAPO-34 对模拟烟气中零价汞的脱除性能[J]. 环境工程学报, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
引用本文: 宗晨曦, 纪蕾朋, 陈奎续, 徐浩淼, 瞿赞, 晏乃强. Cu/SAPO-34 对模拟烟气中零价汞的脱除性能[J]. 环境工程学报, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
ZONG Chenxi, JI Leipeng, CHEN Kuixu, XU Haomiao, QU Zan, YAN Naiqiang. Removal performance of Hg0 in simulated flue gas over Cu/SAPO-34[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
Citation: ZONG Chenxi, JI Leipeng, CHEN Kuixu, XU Haomiao, QU Zan, YAN Naiqiang. Removal performance of Hg0 in simulated flue gas over Cu/SAPO-34[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163

Cu/SAPO-34 对模拟烟气中零价汞的脱除性能

  • 基金项目:

    国家自然科学基金资助项目(51478261)

Removal performance of Hg0 in simulated flue gas over Cu/SAPO-34

  • Fund Project:
  • 摘要: 采用离子交换法将不同比例的Cu负载于SAPO-34分子筛,通过固定床反应器考察其对模拟烟气中零价汞(Hg0)的催化去除效果,并使用BET、XRD、SEM等方法对材料性能进行分析表征。结果发现:在脱汞效率测试中,1.5×10-5 HCl能显著提升Cu/SAPO-34对Hg0的去除效率。在100~250 ℃范围内,Hg0去除率均能达到80%以上,最大去除效率达到97%。在抗水抗硫实验中,H2O对Cu/SAPO-34-10%脱汞效率影响很小;通入2×10-3 SO2 450 min后,Hg0去除率仍有85%,停止通入SO2后材料的脱汞效率能够恢复。
  • 加载中
  • [1] LIU R H, XU W Q, LI T, et al.Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J].Environental Sciences,2015,38:126-132 10.1016/j.jes.2015.04.023
    [2] ZHANG M Z, WANG P, DONG Y, et al.Study of elemental mercury oxidation over an SCR catalyst with calcium chloride addition[J].Chemical Engineering Journal,2014,253:243-250 10.1016/j.cej.2014.05.066
    [3] SENIOR C L, HELBLE J J, SAROFIM A F.Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J].Fuel Processing Technology,2000,65:263-288 10.1016/S0378-3820(00)00082-5
    [4] ZHUANG Y, ZYGARLICKE C J, GALBREATH K C, et al.Kinetic transformation of mercury in coal combustion flue gas in a bench-scale entrained-flow reactor[J].Fuel Processing Technology,2004,85:463-472 10.1016/j.fuproc.2003.11.002
    [5] CORDOBA P, MAROTO-VALER M, DELGADO M A, et al.Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions[J].Environental Research,2016,145:154-161 10.1016/j.envres.2015.12.002
    [6] UDDIN M A, YAMADA T, OCHIAI R, et al.Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J].Energy & Fuels,2008,22:2284-2289 10.1021/ef800134t
    [7] CLARKSON T W, MAGOS L.The toxicology of mercury and its chemical compounds[J].Critical Reviews in Toxicology,2006,36:609-662 10.1080/10408440600845619
    [8] WANG J, WANG W H, XU W, et al.Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J].Journal of Environmental Sciences,2011,23:1839-1844 10.1016/S1001-0742(10)60584-0
    [9] ZHANG Y, YANG J P, YU X H, et al.Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J].Fuel Processing Technology,2017,158:272-280 10.1016/j.fuproc.2017.01.020
    [10] SLIGER R N, KRAMLICH J C, MARINOV N M.Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J].Fuel Processing Technology,2000,65:423-438 10.1016/S0378-3820(99)00108-3
    [11] LEE C W, SRIVASTAVA R K, GHORISHI S B, et al.Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J].Journal of the Air & Waste Management Association,2004,54:1560-1566 10.1080/10473289.2004.10471009
    [12] PRESTO A A, GRANITE E J.Survey of catalysts for oxidation of mercury in flue gas[J].Environmental Science & Technology,2006,40:5601-5609 10.1021/es060504i
    [13] GAO W, LIU Q C, WU C Y, et al.Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J].Chemical Engineering Journal,2013,220:53-60 10.1016/j.cej.2013.01.062
    [14] YU C L, HUANG B C, DONG L F, et al.Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J].Chemical Engineering Journal,2017,316:1059-1068 10.1016/j.cej.2017.02.024
    [15] YU C L, DONG L F, CHEN F, et al.Low temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods a comparative study[J].Environental Technology,2017,38:1030-1042 10.1080/09593330.2016.1216170
    [16] YU J, GUO F, WANG Y L,et al.Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J].Applied Catalysis B: Environmental,2010,95:160-168 10.1016/j.apcatb.2009.12.023
    [17] FERNáNDEZ-MIRANDA N, LOPEZ-ANTON M A, DíAZ-SOMOANO M, et al.Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion[J].Chemical Engineering Journal,2016,285:77-82 10.1016/j.cej.2015.10.022
    [18] WANG F M, LI G L, SHEN B X, et al.Mercury removal over the vanadia–titania catalyst in CO2-enriched conditions[J].Chemical Engineering Journal,2015,263:356-963 10.1016/j.cej.2014.10.091
    [19] ZHUANG Y, LAUMB J, LIGGETT R, et al.Impacts of acid gases on mercury oxidation across SCR catalyst[J].Fuel Processing Technology,2007,88:929-934 10.1016/j.fuproc.2007.03.010
    [20] LIU R, XU W Q, TONG L, et al.Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst[J].Journal Environental Sciences,2015,36:76-83 10.1016/j.jes.2015.03.031
    [21] BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al.Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J].Chemical Society Reviews,2015,44:7371-7405 10.1039/C5CS00108K
    [22] WANG J H, ZHAO H W, HALLER G, et al.Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J].Applied Catalysis B: Environmental,2017,202:346-354 10.1016/j.apcatb.2016.09.024
    [23] NIU C, SHI X Y, LIU K, et al.A novel one-pot synthesized CuCe/SAPO-34 catalyst with high NH3-SCR activity and H2O resistance[J].Catalysis Communications,2016,81:20-23 10.1016/j.catcom.2016.04.007
    [24] PETITTO C, DELAHAY G.Selective catalytic reduction of NOx by NH3 on Cu/SAPO-34 catalysts: Influence of silicium content on the activity of calcined and hydrotreated samples[J].Chemical Engineering Journal,2015,264:404-410 10.1016/j.cej.2014.11.111
    [25] MA L, CHENG Y S, CAVATAIO G, et al.Characterization of commercial Cu/SSZ-13 and Cu/SAPO-34 catalysts with hydrothermal treatment for NH3 SCR of NOx in diesel exhaust[J].Chemical Enginnering Journal,2013,225:323-330 10.1016/j.cej.2013.03.078
    [26] WANG D, JANGJOU Y, LIU Y, et al.A comparison of hydrothermal aging effects on NH3 SCR of NOx over Cu/SSZ-13 and Cu/SAPO-34 catalysts[J].Applied Catalysis B: Environmental,2015,165:438-445 10.1016/j.apcatb.2014.10.020
    [27] SU W K, LI Z G, PENG Y, et al.Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J].Physical Chemistry Chemical Physics,2015,17:29142-29149 10.1039/C5CP05128B
    [28] WANG L, LI W, QI G S, et al.Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J].Journal of Catalysis,2012,289:21-29 10.1016/j.jcat.2012.01.012
    [29] YAN C D, CHENG H, YUAN Z S, et al.The role of isolated Cu2+ location in structural stability of Cu-modified SAPO-34 in NH3 SCR of NO[J].Environental Technology,2015,36:169-177 10.1080/09593330.2014.941017
    [30] YU T, WANG J, SHEN M Q, et al.The influence of CO2 and H2O on selective catalytic reduction of NO by NH3 over Cu/SAPO-34 catalyst[J].Chemical Engineering Journal,2015,264:845-855 10.1016/j.cej.2014.12.017
    [31] LI J H, LIANG X, XU S C, et al.Catalytic performance of manganese cobalt oxides on methane combustion at low temperature[J].Applied Catalysis B: Environmental,2009,90:307-312 10.1016/j.apcatb.2009.03.027
    [32] GAO W, LIU Q, WU C Y, et al.Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J].Chemical Engineering Journal,2013,220:53–60 10.1016/j.cej.2013.01.062
    [33] 乔仁静,许琦,陈凯歌,等.溶胶-凝胶法制备高比表面积CeO2-TiO2催化剂及其在模拟烟气中脱除Hg0性能的研究[J]. 环境工程学报,2017,11(10):5535-5542 10.12030/j.cjee.201612123
    [34] CAO Y, BOBBY C, WU J, et al.Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J].Energy Fuels,2007,21(1):145-156 10.1021/ef0602426
  • 加载中
计量
  • 文章访问数:  3424
  • HTML全文浏览数:  3036
  • PDF下载数:  361
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18
宗晨曦, 纪蕾朋, 陈奎续, 徐浩淼, 瞿赞, 晏乃强. Cu/SAPO-34 对模拟烟气中零价汞的脱除性能[J]. 环境工程学报, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
引用本文: 宗晨曦, 纪蕾朋, 陈奎续, 徐浩淼, 瞿赞, 晏乃强. Cu/SAPO-34 对模拟烟气中零价汞的脱除性能[J]. 环境工程学报, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
ZONG Chenxi, JI Leipeng, CHEN Kuixu, XU Haomiao, QU Zan, YAN Naiqiang. Removal performance of Hg0 in simulated flue gas over Cu/SAPO-34[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163
Citation: ZONG Chenxi, JI Leipeng, CHEN Kuixu, XU Haomiao, QU Zan, YAN Naiqiang. Removal performance of Hg0 in simulated flue gas over Cu/SAPO-34[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1691-1701. doi: 10.12030/j.cjee.201710163

Cu/SAPO-34 对模拟烟气中零价汞的脱除性能

  • 1. 上海交通大学环境科学与工程学院,上海 200240
  • 2. 福建龙净环保股份有限公司,龙岩 364000
基金项目:

国家自然科学基金资助项目(51478261)

摘要: 采用离子交换法将不同比例的Cu负载于SAPO-34分子筛,通过固定床反应器考察其对模拟烟气中零价汞(Hg0)的催化去除效果,并使用BET、XRD、SEM等方法对材料性能进行分析表征。结果发现:在脱汞效率测试中,1.5×10-5 HCl能显著提升Cu/SAPO-34对Hg0的去除效率。在100~250 ℃范围内,Hg0去除率均能达到80%以上,最大去除效率达到97%。在抗水抗硫实验中,H2O对Cu/SAPO-34-10%脱汞效率影响很小;通入2×10-3 SO2 450 min后,Hg0去除率仍有85%,停止通入SO2后材料的脱汞效率能够恢复。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回