活体微藻对镉(Ⅱ)的富集机理

蒋心诚, 李彩云, 周旭东, 姚伦光, 高鹏程. 活体微藻对镉(Ⅱ)的富集机理[J]. 环境工程学报, 2018, 12(5): 1382-1388. doi: 10.12030/j.cjee.201710054
引用本文: 蒋心诚, 李彩云, 周旭东, 姚伦光, 高鹏程. 活体微藻对镉(Ⅱ)的富集机理[J]. 环境工程学报, 2018, 12(5): 1382-1388. doi: 10.12030/j.cjee.201710054
JIANG Xincheng, LI Caiyun, ZHOU Xudong, YAO Lunguang, GAO Pengcheng. Accumulation mechanism of Cd2+ upon living microalgae[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1382-1388. doi: 10.12030/j.cjee.201710054
Citation: JIANG Xincheng, LI Caiyun, ZHOU Xudong, YAO Lunguang, GAO Pengcheng. Accumulation mechanism of Cd2+ upon living microalgae[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1382-1388. doi: 10.12030/j.cjee.201710054

活体微藻对镉(Ⅱ)的富集机理

  • 基金项目:

    河南省科研服务平台项目(2016151)

    河南省南水北调中线水源区水生态安全创新型科技团队专项(17454)

Accumulation mechanism of Cd2+ upon living microalgae

  • Fund Project:
  • 摘要: 选取小球衣藻(Chlamydomonas microsphaera)、铜绿微囊藻(Microcystis aeruginosa)、钝顶螺旋藻(Spirulina platensis)和四尾栅藻(Scenedesmus quadricauda)等4种微藻,通过室内模拟实验,对水体中的Cd2+进行吸附,并对吸附Cd2+的微藻分别采用去离子水、0.2 mol·L-1 CaCl2与研磨处理,测定Cd2+的解脱量,研究活体微藻对重金属离子的富集特征与机理。结果表明:4种活体微藻均对水体中Cd2+有较强的富集能力,在Cd2+初始浓度为10 mg·L-1、溶液pH为7.0的实验条件下,小球衣藻富集量可达76.34 mg·g-1,铜绿微囊藻、钝顶螺旋藻和四尾栅藻富集量分别为24.78、15.28 和 9.85 mg·g-1,说明微藻是良好的重金属吸附剂;4种活体微藻对Cd2+的富集特征均符合准二级动力学方程(R2>0.99),反映出活体微藻对Cd2+的富集主要是一种化学行为;活体微藻对Cd2+的富集主要是离子交换形式的化学吸附,富集比例均在60%以上,其中小球衣藻最高,达86.51%。除化学吸附外,还包括物理吸附与生物吸收,生物吸收所占富集比例为6.75%~18.96%,而物理吸附量最少,为3.02%~14.63%。
  • 加载中
  • [1] TRAN H T, VU N D, MATSUKAWA M, et al.Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam[J].Journal of Environmental Chemical Engineering,2016,4(2):2529-2535 10.1016/j.jece.2016.04.038
    [2] BULGARIU D, BULGARIU L.Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: Batch and column studies[J].Journal of Cleaner Production,2016,112:4525-4533 10.1016/j.jclepro.2015.05.124
    [3] FENG D, ALDRICH C, TAN H.Treatment of acid mine water by use of heavy metal precipitation and ion exchange[J].Minerals Engineering,2000,13(6):623-642 10.1016/S0892-6875(00)00045-5
    [4] AHAMAD T, NAUSHAD M, INAMUDDIN.Heavy metal ion-exchange kinetic studies over cellulose acetate Zr(IV) molybdophosphate composite cation-exchanger[J].Desalination & Water Treatment,2015,53(6):1675-1682 10.1080/19443994.2013.855676
    [5] LIU H, DEWEN H E, ZHU J.Treatment of heavy metal wastewater by a short flow ceramic process[J].Chemical Industry & Engineering Progress,2015,34(9):3467-3471
    [6] DENG L, SU Y, SU H, et al.Biosorption of copper(II) and lead(II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects[J].Adsorption,2006,12(4):267-277 10.1007/s10450-006-0503-y
    [7] YARGIC A S, SAHIN R Z Y, ?ZBAY N, et al.Assessment of toxic copper(II) biosorption from aqueous solution by chemicallytreated tomato waste[J].Journal of Cleaner Production,2015,88:152-159 10.1016/j.jclepro.2014.05.087
    [8] LIU S H, ZENG G M, NIU Q Y, et al.Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review[J].Bioresource Technology,2017,224:25-33 10.1016/j.biortech.2016.11.095
    [9] GOLA D, DEY P, BHATTACHARYA A, et al.Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana[J].Bioresource Technology,2016,218:388-396 10.1016/j.biortech.2016.06.096
    [10] FARHAN S N, KHADOM A A.Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae[J].International Journal of Industrial Chemistry,2015,6(2):119-130 10.1007/s40090-015-0038-8
    [11] YALCIN S, SEZER S, APAK R.Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseirabarbata[J].Environmental Science and Pollution Research,2012,19(8):3118-3125 10.1007/s11356-012-0807-2
    [12] HE J, CHEN J P.A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools[J].Bioresource Technology,2014,160:67-78 10.1016/j.biortech.2014.01.068
    [13] DOSHI H, SETH C, RAY A, et al.Bioaccumulation of heavy metals by green algae[J].Current Microbiology,2008,56(3):246-255. 10.1007/s00284-007-9070-z
    [14] üZüN I, BAYRAMO?LU G, YALC?IN E, et al.Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii[J].Journal of Environmental Management,2005,77(2):85-92 10.1016/j.jenvman.2005.01.028
    [15] CHOJNACKA K, CHOJNACKI A, GORECKA H.Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process[J].Chemosphere,2005,59(1):75-84 10.1016/j.chemosphere.2004.10.005
    [16] JAYAKUMAR R, RAJASIMMAN M, KARTHIKEYAN C.Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis[J].Ecotoxicology and Environmental Safety,2015,121:199-210 10.1016/j.ecoenv.2015.03.040
    [17] BIRUNGI Z S, CHIRWA E M.The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis[J].Bioresource Technology,2014,160(5):43-51 10.1016/j.biortech.2014.01.033
    [18] BA?DA E, TUZEN M, SARI A.Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae)[J].Journal of Environmental Radioactivity,2017,175-176:7-14 10.1016/j.jenvrad.2017.04.004
    [19] 谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅、铜的吸附特性研究[J]. 环境科学学报,2016,36(4):1190-1198.
    [20] 王璐, 赵保卫, 马锋锋, 等. 马铃薯秸秆生物炭对黄土吸附Cd(Ⅱ) 的影响[J]. 环境化学,2016,35(7):1422-1430.
    [21] BAKHTIARI N, AZIZIAN S, ALSHEHRI S M, et al.Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon[J].Microporous & Mesoporous Materials,2015,217:173-177. 10.1007/s00284-007-9070-z
    [22] 李国新, 张丹丹, 颜昌宙, 等. 轮叶黑藻对铅的吸附特征及生物吸附机理研究[J]. 中国环境科学,2011,31(8):1327-1333.
    [23] AKHTAR K, AKHTAR M W, Khalid A M.Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum[J].Water Research,2007,41(6):1366-1378. 10.1016/j.watres.2006.12.009
    [24] ANDOSCH A, AFFENZELLER M J, LüTZ C, et al.A freshwater green alga under cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias[J].Journal of Plant Physiology,2012,169(15):1489-500 10.1016/j.jplph.2012.06.002
  • 加载中
计量
  • 文章访问数:  2151
  • HTML全文浏览数:  1832
  • PDF下载数:  392
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

活体微藻对镉(Ⅱ)的富集机理

  • 1. 西北农林科技大学资源环境学院,杨凌 712100
  • 2. 南水北调中线水源区水安全河南省协同创新中心,南阳 473061
  • 3. 河南省南水北调中线水源区生态安全重点实验室,南阳 473061
基金项目:

河南省科研服务平台项目(2016151)

河南省南水北调中线水源区水生态安全创新型科技团队专项(17454)

摘要: 选取小球衣藻(Chlamydomonas microsphaera)、铜绿微囊藻(Microcystis aeruginosa)、钝顶螺旋藻(Spirulina platensis)和四尾栅藻(Scenedesmus quadricauda)等4种微藻,通过室内模拟实验,对水体中的Cd2+进行吸附,并对吸附Cd2+的微藻分别采用去离子水、0.2 mol·L-1 CaCl2与研磨处理,测定Cd2+的解脱量,研究活体微藻对重金属离子的富集特征与机理。结果表明:4种活体微藻均对水体中Cd2+有较强的富集能力,在Cd2+初始浓度为10 mg·L-1、溶液pH为7.0的实验条件下,小球衣藻富集量可达76.34 mg·g-1,铜绿微囊藻、钝顶螺旋藻和四尾栅藻富集量分别为24.78、15.28 和 9.85 mg·g-1,说明微藻是良好的重金属吸附剂;4种活体微藻对Cd2+的富集特征均符合准二级动力学方程(R2>0.99),反映出活体微藻对Cd2+的富集主要是一种化学行为;活体微藻对Cd2+的富集主要是离子交换形式的化学吸附,富集比例均在60%以上,其中小球衣藻最高,达86.51%。除化学吸附外,还包括物理吸附与生物吸收,生物吸收所占富集比例为6.75%~18.96%,而物理吸附量最少,为3.02%~14.63%。

English Abstract

参考文献 (24)

目录

/

返回文章
返回