碳源对反硝化生物滤池运行及微生物种群的影响

郑晓英, 乔露露, 王慰, 李楠, 李魁晓. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046
引用本文: 郑晓英, 乔露露, 王慰, 李楠, 李魁晓. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046
ZHENG Xiaoying, QIAO Lulu, WANG Wei, LI Nan, LI Kuixiao. Effects of carbon sources on operation and microbial population of denitrification biological filter[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046
Citation: ZHENG Xiaoying, QIAO Lulu, WANG Wei, LI Nan, LI Kuixiao. Effects of carbon sources on operation and microbial population of denitrification biological filter[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046

碳源对反硝化生物滤池运行及微生物种群的影响

  • 基金项目:

Effects of carbon sources on operation and microbial population of denitrification biological filter

  • Fund Project:
  • 摘要: 以某城市污水厂二级出水为原水,以甲醇、乙酸钠为碳源,研究了不同碳源对反硝化生物滤池运行的影响,并借助16S rDNA测序技术对滤池生物膜的微生物群落组成和结构进行了解析。结果表明,采用逐渐增加滤速的方式进行挂膜,乙酸钠滤池在启动7 d后出水水质稳 定,NO3--N去除率在96%以上,NO2--N积累消失;甲醇滤池则需要9 d。稳定运行期,甲醇和乙酸钠滤池达到最大反硝化效率所需碳氮比均为4.5~5.5,出水TN<1.0 mg·L-1。乙酸钠滤池沿过滤方向硝酸盐氮降解较快。与甲醇相比,乙酸钠微生物产量高、运行周期短、反冲洗时间长,且药剂投加量高。从滤池脱氮效率、运行稳定性和成本等方面综合考虑,甲醇可作为最佳碳源。微生物在属水平进行聚类分析结果表明,以甲醇、乙酸钠为碳源的反硝化生物滤池中的微生物种群存在差异。甲醇滤池中与反硝化有关的属占36.68%,其中优势菌属Methylophilus,属于嗜甲基型菌属。乙酸钠滤池中与反硝化有关的菌属占58.38%。其优势菌属为Arobacter,可利用有机酸还原硝酸盐。
  • 加载中
  • [1] 石效卷,李璐,张涛,等.水十条 水实条:对《水污染防治计划的解读》[J]. 环境保护科学,2015,41(3):1-3 10.16803/j.cnki.issn.1004-6216.2015.03.002
    [2] 马世豪,何兴海.《污水综合排放标准》的实施与监测[J]. 环境监测管理与技术,1998,10(5):24-27
    [3] 李文龙,杨碧印,陈益清,等.不同外加碳源反硝化滤池的深度脱氮特性研究[J]. 水处理技术,2015,41(11):82-85
    [4] 孙迎雪,胡银翠,孙云祥,等.反硝化生物滤池深度脱氮机理[J]. 环境工程学报,2012,6(6):1857-1862
    [5] 高建锋,杨碧印,赵建树,等.反硝化生物滤池用于再生水脱氮效能及动力学研究[J]. 环境工程学报,2016,10(1):199-203
    [6] 刘秀红,甘一萍,杨庆,等.碳源对反硝化生物滤池系统运行及微生物种群影响[J]. 水处理技术,2013,39(11):36-40
    [7] BACQUET G, JORETJ C, RORGALLA F.Biofilm start-up and controlinaerated filter[J].Environmental Technology,1991,12(9):747-756 10.1080/09593339109385066
    [8] 龙腾锐,方芳,郭劲松.酶促填料变速生物滤池的生产性启动研究[J]. 给水排水,2000,26(11):12-15 10.13789/j.cnki.wwe1964.2000.11.004
    [9] 夏琼琼,颜秀勤,张维.生物滤池外加碳源脱氮研究[J]. 环境污染与防治,2011,33(12):56-59 10.15985/j.cnki.1001-3865.2011.12.024
    [10] 张兰英,刘娜,孙立波,等.现代环境微生物技术[M]. 北京:清华大学出版社,2005
    [11] 徐亚同.不同碳源对生物反硝化的影响[J]. 环境科学,1994,15(2):31-44
    [12] 杨碧印,李文龙,许仕荣,等.不同外加碳源反硝化滤池的挂膜与启动特性研究[J]. 水处理技术,2015,41(4):104-107
    [13] 王淑莹,殷芳芳,侯红勋,等.以甲醇作为生物外碳源的生物反硝化[J]. 北京工业大学学报,2009,35(11):1521-1526
    [14] HALLIN S, ROTHMAN M, PELL M.Adaptation of denitrifying bacteria to acetate and methanol in activated sludge[J].Water Research,1996,30(6):1445-1450 10.1177/16.2.136
    [15] GINIGE M P, HUGENHOLTZ P, DAIMS H, et al.Use of stable-isotope probing, full-cycle rRNA analysis and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community[J].Applied and Environmental Microbiology,2004,70(1):588-596 10.1128/ AEM.70.1.588-596.2004
    [16] OSAKA T, YOSHIE S, TSUNEDA S, et al.Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J].Microbial Ecology,2006,52(2):253-266 10.1007/s00248-006-9071-7
    [17] 张仲玲.反硝化脱氮外加碳源的选择[D]. 哈尔滨:哈尔滨工业大学,2009
    [18] KIM J S, KIM S J, LEE B H.Effect of Alcaligenes faecalis on nitrous oxide emission and nitrogen removal in three phase fluidized bed process[J].Environment Science Health,2004,39(7):1791-1804
    [19] 邓康.反硝化脱氮及其微生物特性研究[D]. 广州:华南理工大学,2010
    [20] THOMSEN T R, KONG Y, NIELSEN P H.Ecophysiology of abundant denitrifying bacteria in activated sludge[J].FEMS Microbiology Ecology,2007,60(3):370-382 10.1111/j.1574-6941.2007.00309.x
    [21] SEVIOUR R, NIELSEN P H, SEVIOUR R, et al.Microbial ecology of activated sludge[J].Applied Microbiology,2010,12(1):412-415 10.2166/9781780401645
    [22] 陈谊,孙宝盛,张斌,等.不同MBR反应器中反硝化菌群落结构的研究[J]. 中国环境科学,2010,30(1):69-75
    [23] 黄菲,梅晓洁,王志伟,等.冬季低温下MBR 与CAS 工艺运行及微生物群落特征[J]. 环境科学,2014,34(3):1002-1008 10.13227/j.hjkx.2014.03.026
    [24] OSAKA T, YOSHIE S, TSUNEDA S, et al.Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing[J].Microbial Ecology,2006,52(2):253-266
    [25] LAPIDUA A, CLUM A, LABUTTI K, et al.Genomes of three methylotrophs form a single niche reveal the genetic and metabolic divergence of the methylophilaceae[J].Journal of Bacteriology,2011,193(15):3757-3764 10.1128/JB.00404-11
    [26] HAO R, LI S, LI J, et al.Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community[J].Bioresource Technology,2013,143:178-186 10.1016/j.biortech.2013.06.001
    [27] SHINODA Y, SAKAI Y, UENISHI H, et al.Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp strain DNT-1[J].Applied and Environmental Microbiology,2004,70(3):1385-1392 10.1128/AEM.70.3.1385-1392.2004
    [28] 师帅.前置反硝化生物滤池的脱氮效能与微生物群落结构解析[D]. 哈尔滨:哈尔滨工业大学,2014
  • 加载中
计量
  • 文章访问数:  4347
  • HTML全文浏览数:  4036
  • PDF下载数:  431
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

碳源对反硝化生物滤池运行及微生物种群的影响

  • 1. 北京工业大学北京市水质科学与水环境恢复工程重点实验室,北京100124
  • 2. 北京城市排水集团有限责任公司科技研发中心,北京100022
基金项目:

摘要: 以某城市污水厂二级出水为原水,以甲醇、乙酸钠为碳源,研究了不同碳源对反硝化生物滤池运行的影响,并借助16S rDNA测序技术对滤池生物膜的微生物群落组成和结构进行了解析。结果表明,采用逐渐增加滤速的方式进行挂膜,乙酸钠滤池在启动7 d后出水水质稳 定,NO3--N去除率在96%以上,NO2--N积累消失;甲醇滤池则需要9 d。稳定运行期,甲醇和乙酸钠滤池达到最大反硝化效率所需碳氮比均为4.5~5.5,出水TN<1.0 mg·L-1。乙酸钠滤池沿过滤方向硝酸盐氮降解较快。与甲醇相比,乙酸钠微生物产量高、运行周期短、反冲洗时间长,且药剂投加量高。从滤池脱氮效率、运行稳定性和成本等方面综合考虑,甲醇可作为最佳碳源。微生物在属水平进行聚类分析结果表明,以甲醇、乙酸钠为碳源的反硝化生物滤池中的微生物种群存在差异。甲醇滤池中与反硝化有关的属占36.68%,其中优势菌属Methylophilus,属于嗜甲基型菌属。乙酸钠滤池中与反硝化有关的菌属占58.38%。其优势菌属为Arobacter,可利用有机酸还原硝酸盐。

English Abstract

参考文献 (28)

目录

/

返回文章
返回