二级出水中亚硝胺类消毒副产物分布及臭氧化特性

郑莹, 金鹏康, 金鑫, 王晓昌. 二级出水中亚硝胺类消毒副产物分布及臭氧化特性[J]. 环境工程学报, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
引用本文: 郑莹, 金鹏康, 金鑫, 王晓昌. 二级出水中亚硝胺类消毒副产物分布及臭氧化特性[J]. 环境工程学报, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
ZHENG Ying, JIN Pengkang, JIN Xin, WANG Xiaochang. Distribution and ozonation characteristics of nitrosamines in wastewater treatment plant effluent[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
Citation: ZHENG Ying, JIN Pengkang, JIN Xin, WANG Xiaochang. Distribution and ozonation characteristics of nitrosamines in wastewater treatment plant effluent[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037

二级出水中亚硝胺类消毒副产物分布及臭氧化特性

  • 基金项目:

    国家科技支撑计划项目(2014BAC13B06)

    国家自然科学基金资助项目(51378414)

    陕西省污水处理与资源化创新团队(2013KCT-13)

Distribution and ozonation characteristics of nitrosamines in wastewater treatment plant effluent

  • Fund Project:
  • 摘要: 在污水深度处理过程中,臭氧氧化通常用来去除二级出水中的难降解有机物,提高后续深度处理工艺的处理效率。针对臭氧氧化对二级出水中亚硝胺类消毒副产物的作用,以城市污水厂二级出水为研究对象,采用固相萃取及超高效液相串联三重四级杆质谱联用仪作为分析测试手段,对二级出水中亚硝胺类消毒副产物的分布及臭氧化特性进行研究。结果表明,二级出水中7种亚硝胺类物质浓度由大到小依次为NPYR、NDIP、NDBA、NDMA、NMEA、NDPA和NDEA,均值分别为250、45.96、31.17、28、4.92、4.71和2.15 ng·L-1。随着臭氧投加量的提升,臭氧氧化会使二级出水中的亚硝胺类物质含量增加,特别是NPYR、NDIP、NDBA和NDMA 4种物质;但亚硝胺类物质的生成势却随之降低,且在臭氧氧化作用下亚硝胺的生成势降低量明显高于其自身的增加量,臭氧投加量越大,二者之间的差异越明显。臭氧氧化导致亚硝胺生成势的降低作用可以减少后续深度处理工艺及消毒过程中该类物质的生成,有利于保障再生水的回用安全。
  • 加载中
  • [1] NAWROCKI J,ANDRZEJEWSKI P.Nitrosamines and water[J].Journal of Hazardous Materials,2011,189(1):1-18 10.1016/j.jhazmat.2011.02.005
    [2] 李婷,鲜啟鸣,孙成,等.水中N-亚硝胺类消毒副产物的污染现状及分析技术[J]. 环境化学,2012,31(11):1767-1774
    [3] WANG C K,ZHANG X J,WANG J, et al.Detecting N-nitrosamines in water treatment plants and distribution systems in China using UPLC-MS/MS[J].Frontiers of Environmental Science & Engineering,2012,6(6):770-777
    [4] ZHAO Y Y, BOYD J,HRUDEY S E, et al.Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry[J].Environmental Science & Technology,2006,40(24):7636-7641 10.1021/es061332s
    [5] FUJIOKA T,KODAMATANI H,AIZAWA H, et al.Role of membrane fouling substances on the rejection of N-nitrosamines by reverse osmosis[J].Water Research,2017,118:187-195 10.1016/j.watres.2017.03.057
    [6] SEDLAK D L,DEEB R A,HAWLEY E L, et al.Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants[J].Water Environment Research,2005,77 (1):32-39 10.2175/106143005X41591
    [7] WANG X,LIU Z,WANG C,et al.Occurrence and formation potential of nitrosamines in river water and ground water along the Songhua River, China[J].Journal of Environmental Sciences,2016,50(12):65-71 10.1016/j.jes.2016.05.021
    [8] 朱翔,李伟,刘玉灿,等. 超高效液相色谱-三重四极杆质谱联用仪同时检测水中9种亚硝胺[J]. 分析测试学报,2014,33(8):866-872 10.3969/j.issn.1004-4957.2014.08.002
    [9] CHEN C,LEAVEY S,KRASNER S W, et al.Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents[J].Water Research,2014,57:115-126 10.1016/j.watres.2014.02.052
    [10] KRASNER S W,WESTERHOFF P,CHEN B, et al.Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter[J].Environmental Science & Technology,2009,43(8):2911-2918 10.1021/es802443t
    [11] 尚晓玲,李咏梅. 城市污水生物脱氮系统出水经氯胺消毒形成NDMA的影响因素研究[J]. 环境科学,2012,33(5):1604-1608
    [12] GUO Y C,KRASNER S W.Occurrence of primidone,carbamazepine,caffeine,and precursors for N-nitrosodimethylamine in drinking water sources impacted by wastewater[J].American Water Resources Association,2009,45(1):58-67 10.1111/j.1752-1688.2008.00289.x
    [13] WESTERHOFF P,YOON Y,SNYDER S, et al.Fate of endocrine-disruptor,pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J].Environmental Science & Technology,2005,39(17):6649-6663 10.1021/es0484799
    [14] SGROI M,ROCCARO P,OELKER G L, et al.N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant[J].Environmental Science & Technology,2014,48(17):10308-10315 10.1021/es5011658
    [15] PISARENKO A N,STANFORD B D,YAN D, et al.Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications [J].Water Research,2012,46:316-326 10.1016/j.watres.2011.10.021
    [16] 廖晓斌,陈超,汪隽,等. 常规/臭氧生物活性炭去除有机物及亚硝胺前体物特性[J].清华大学学报(自然科学版),2013,53(4):520-525
    [17] GALAPATE R P, BAES A U,OKADA M.Transformation of dissolved organic matter during ozonation: Effects on trihalomethane formation potential[J].Water Research,2001,35(9):2201-2206 10.1016/S0043-1354(00)00489-9
    [18] KASPRZY-HORDERN B, RACZYK-STANISLAWIAK U,?WIETLIK J, et al.Catalytic ozonation of natural organic matter on alumina[J].Applied Catalysis B:Environmental,2006,62(3/4):345-358 10.1016/j.apcatb.2005.09.002
    [19] 陈文文,张原,李小水,等. 水中N-亚硝胺的富集及色谱分析测试技术[J].环境化学,2016,35(10):2117-2126
    [20] 徐倩,徐斌,覃操,等. 水中典型含氮有机物氯化生成消毒副产物的潜能研究[J].环境科学,2011,32(7):1967-1973
    [21] SGROI M, ROCCARO P,OELKER G, et al.N-nitrosodimethylamine(NDMA) formation during ozonation of wastewater and water treatment polymers[J].Chemosphere,2016,144:1618-1623 10.1016/j.chemosphere.2015.10.023
    [22] MARTI E J, PISARENKO A N,PELLER J R, et al.N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds[J].Water Research,2015,72(4):262-270 10.1016/j.watres.2014.08.047
    [23] 陈超,张晓健,何文杰,等. 消毒副产物前体物的指标体系[J].中国给水排水,2006,22(4):9-12 10.3321/j.issn:1000-4602.2006.04.003
    [24] WANG X, LIU Z,WANG C, et al.Occurrence and formation potential of nitrosamines in river water and ground water along the Songhua River, China[J].Journal of Environmental Sciences,2016,50(12):65-71 10.1016/j.jes.2016.05.021
    [25] HU H D,JIANG C,MA H, et al.Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM[J].Water Research,2017,109:114-121 10.1016/j.watres.2016.10.010
  • 加载中
计量
  • 文章访问数:  3609
  • HTML全文浏览数:  3203
  • PDF下载数:  569
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22
郑莹, 金鹏康, 金鑫, 王晓昌. 二级出水中亚硝胺类消毒副产物分布及臭氧化特性[J]. 环境工程学报, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
引用本文: 郑莹, 金鹏康, 金鑫, 王晓昌. 二级出水中亚硝胺类消毒副产物分布及臭氧化特性[J]. 环境工程学报, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
ZHENG Ying, JIN Pengkang, JIN Xin, WANG Xiaochang. Distribution and ozonation characteristics of nitrosamines in wastewater treatment plant effluent[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037
Citation: ZHENG Ying, JIN Pengkang, JIN Xin, WANG Xiaochang. Distribution and ozonation characteristics of nitrosamines in wastewater treatment plant effluent[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 751-759. doi: 10.12030/j.cjee.201710037

二级出水中亚硝胺类消毒副产物分布及臭氧化特性

  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
基金项目:

国家科技支撑计划项目(2014BAC13B06)

国家自然科学基金资助项目(51378414)

陕西省污水处理与资源化创新团队(2013KCT-13)

摘要: 在污水深度处理过程中,臭氧氧化通常用来去除二级出水中的难降解有机物,提高后续深度处理工艺的处理效率。针对臭氧氧化对二级出水中亚硝胺类消毒副产物的作用,以城市污水厂二级出水为研究对象,采用固相萃取及超高效液相串联三重四级杆质谱联用仪作为分析测试手段,对二级出水中亚硝胺类消毒副产物的分布及臭氧化特性进行研究。结果表明,二级出水中7种亚硝胺类物质浓度由大到小依次为NPYR、NDIP、NDBA、NDMA、NMEA、NDPA和NDEA,均值分别为250、45.96、31.17、28、4.92、4.71和2.15 ng·L-1。随着臭氧投加量的提升,臭氧氧化会使二级出水中的亚硝胺类物质含量增加,特别是NPYR、NDIP、NDBA和NDMA 4种物质;但亚硝胺类物质的生成势却随之降低,且在臭氧氧化作用下亚硝胺的生成势降低量明显高于其自身的增加量,臭氧投加量越大,二者之间的差异越明显。臭氧氧化导致亚硝胺生成势的降低作用可以减少后续深度处理工艺及消毒过程中该类物质的生成,有利于保障再生水的回用安全。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回