活性炭负载钴铁氧体催化PMS降解水中罗丹明B

邓林, 邹志言, 曾寒轩, 施周, 张文. 活性炭负载钴铁氧体催化PMS降解水中罗丹明B[J]. 环境工程学报, 2018, 12(5): 1372-1381. doi: 10.12030/j.cjee.201710004
引用本文: 邓林, 邹志言, 曾寒轩, 施周, 张文. 活性炭负载钴铁氧体催化PMS降解水中罗丹明B[J]. 环境工程学报, 2018, 12(5): 1372-1381. doi: 10.12030/j.cjee.201710004
DENG Lin, ZOU Zhiyan, ZENG Hanxuan, SHI Zhou, ZHANG Wen. Degradation of rhodamine B in aqueous solution by PMS activated with activated carbon loaded with Co-Fe ferrite[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1372-1381. doi: 10.12030/j.cjee.201710004
Citation: DENG Lin, ZOU Zhiyan, ZENG Hanxuan, SHI Zhou, ZHANG Wen. Degradation of rhodamine B in aqueous solution by PMS activated with activated carbon loaded with Co-Fe ferrite[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1372-1381. doi: 10.12030/j.cjee.201710004

活性炭负载钴铁氧体催化PMS降解水中罗丹明B

  • 基金项目:

    国家科技支撑计划项目(2012BAJ24B03)

Degradation of rhodamine B in aqueous solution by PMS activated with activated carbon loaded with Co-Fe ferrite

  • Fund Project:
  • 摘要: 采用化学共沉淀法制备了磁性活性炭负载钴铁氧体(CoFe2O4@AC),用于催化过硫酸氢钾(PMS)产生SO4-·自由基降解水中罗丹明B(RhB)。采用SEM、HR-TEM、XRD、FTIR、XPS等测试手段对CoFe2O4@AC的表面物理化学特性进行了表征,考察了PMS投加量、RhB浓度、pH、温度对降解RhB的影响。实验结果表明:与AC/PMS、CoFe2O4/PMS相比,CoFe2O4@AC/PMS催化体系对RhB具有更高的降解效率,且适用于较宽的pH范围(pH=5.0~9.0);CoFe2O4@AC/PMS体系对RhB的降解随温度的升高而显著加快,其降解活化能为67.46 kJ·mol-1。降解机理研究结果表明,复合材料中的AC和Co(II)协同参与了催化PMS产生·OH和SO4-·的过程。总之,磁性CoFe2O4@AC不仅具有高效的催化效果而且易于从水中分离,对有机染料废水的处理有着良好的前景。
  • 加载中
  • [1] 陈益宾, 王绪绪, 付贤智, 等. 偶氮染料刚果红在水中的光催化降解过程[J]. 催化学报,2005,26(1):37–42 10.1016/j.chemosphere.2013.12.037 RODRIGUEZ S, VASQUEZ L, COSTA D, et al.Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)[J].Chemosphere 2014,101:86–92 10.1016/j.chemosphere.2013.12.037 HU L Z, YANG F, LU W C, et al.Heterogeneous activation of oxone with CoMg/SBA-15 for the degradation of dye rhodamine B in aqueous solution[J].Applied Catalysis B: Environmental,2013,134–135:7–18 10.1016/j.apcatb.2012.12.028 ZHAO G Y, LIU L J, LI J R, et al.Efficient removal of dye MB: Through the combined action of adsorption and photodegradation from NiFe2O4/Ag3PO4[J].Journal of Alloys and Compounds,2016,664:169–174 10.1016/j.jallcom.2016.01.004 ASILTüRK M, SAY?LKAN F, ERDEMO?LU S, et al.Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of rhodamine B[J].Journal of Hazardous Materials,2016,129:164–170 10.1016/j.jhazmat.2005.08.027 PA?DZIOR K, KLEPACZ-SMó?KA A, LEDAKOWICZ S, et al.Integration of nanofiltration and biological degradation of textile wastewater containing azo dye[J].Chemosphere,2009,75:250–255 10.1016/j.chemosphere.2008.12.016 HAZIME R, NGUYEN Q H, FERRONATO C, et al.Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8[J].Applied Catalysis B: Environmental,2014,144:286–291 10.1016/j.apcatb.2013.07.001 JI F, LI C L, WEI X Y, et al.Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of rhodamine B[J].Chemical Engineering Journal,2013,231:434–440 10.1016/j.cej.2013.07.053 DU J K, BAO J G, LIU Y, et al.Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J].Journal of Hazardous Materials,2016,320:150–159 10.1016/j.jhazmat.2016.08.021 WANG Y, FANG J S, CRITTENDEN J C, et al.Novel RGO/-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation[J].Journal of Hazardous Materials,2016:304,897–907 10.1016/j.jhazmat.2017.01.041 QIAN Y J, GUO X, ZHANG Y L, et al.Perfluorooctanoic acid degradation using UV?persulfate process: Modeling of the degradation and chlorate formation[J].Environmental Science & Technology,2016,50:772–781 10.1021/acs.est.5b03715 TAN C Q, GAO N Y, DENG Y, et al.Degradation of antipyrine by heat activated persulfate[J].Separation and Purification Technology,2013,109:122–128 10.1016/j.seppur.2013.03.003 SAPUTRA E, MUHANMMD S, SUN H Q, et al.Activated carbons as green and effective catalysts for generation of reactive radicals in degradation of aqueous phenol[J].RSC Advances,2013,3:21905–21910 10.1039/c3ra42455c SHI P S, SU R J, WAN F Z, et al.Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of orange II in water by advanced oxidation technology based on sulfate radicals[J].Applied Catalysis B: Environmental,2012,123–124:265–272 10.1016/j.apcatb.2012.04.043 GUAN Y L, MA J, REN Y M, et al.Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J].Water Research,2013,47:5431–5438 10.1016/j.watres.2013.06.023 REN Y M, DONG Q, FENG J, et al.Magnetic porous ferrospinel NiFe2O4: A novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water[J].Journal of Colloid and Interfaces Science,2012,382:90–96 10.1016/j.jcis.2012.05.053 WANG Y B, ZHAO H Y, LI M F, et al.Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid[J].Applied Catalysis B: Environmental,2014,147:534–545 10.1016/j.apcatb.2013.09.017 DU Y C, MA W J, LIU P X, et al.Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants[J].Journal of Hazardous Materials,2016,308:58–66 10.1016/j.jhazmat.2016.01.035 DENG L, SHI Z, ZOU Z Y, et al.Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of orange G[J].Environmental Science and Pollution Research, 2017,24:11536–11548 10.1007/s11356-017-8811-1 ROMANOS J, BECKNER M, RASH T, et al.Nanospace engineering of KOH activated carbon[J].Nanotechnology,2012,23:015401 10.1088/0957-4484/23/1/015401 RANI S K, EASWARAMOORTHY D, BILAL I M, et al.Studies on Mn(II)-catalyzed oxidation of α-amino acids by peroxymonosulphate in alkaline medium-deamination and decarboxylation: A kinetic approach[J].Applied Catalysis A: General,2009,369:1–7 10.1016/j.apcata.2009.07.048 HUANG Y H, HUANG Y F, HUANG C I, et al.Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J].Journal of Hazardous Materials,2009,170:1110–1118 10.1016/j.jhazmat.2009.05.091 STUMM W, MORGAN J J.Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M].Third ed.New York:John Wiley & Sons,1996 FENG Y, LIU J H, WU D L, et al.Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J].Chemical Engineering Journal,2015,280:514–524 10.1016/j.cej.2015.05.121 ZENG T, ZHANG X L, WANG S H, et al.Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J].Environmental Science & Technology,2015,49:2350–2357 10.1021/es505014z AI Z H, GAO Z T, ZHANG L Z, et al.Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol[J].Environmental Science & Technology,2013,47:5344–5352 10.1021/es4005202 TIMMINS G S, LIU K J, BECHARA E J H, et al.Trapping of free radicals with direct in vivo EPR detection: A comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for ·OH and SO4[J].Free Radical Biology and Medicine,1999,27:329–333 10.1016/S0891-5849(99)00049-0 LEE P L, CHUI Y K, SUN Y C, et al.Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent[J].Carbon,2010,48:1397–1404 10.1016/j.carbon.2009.12.030 YAO Y J, CHEN H, QIN J C, et al.Iron encapsulated boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction[J].Water Research,2016,101:281–291S 10.1016/j.watres.2016.05.065 ZHOU Z P, ZHANG Y, WANG Z Y, et al.Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy[J].Applied Surface Science,2008,254:6972–6975 10.1016/j.apsusc.2008.05.067 LI X N, WANG Z H, ZHANG B, et al.FexCo3-xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J].Applied Catalysis B: Environmental,2016,181:788–799 10.1016/j.apcatb.2015.08.050
  • 加载中
计量
  • 文章访问数:  3597
  • HTML全文浏览数:  3203
  • PDF下载数:  364
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

活性炭负载钴铁氧体催化PMS降解水中罗丹明B

  • 1. 湖南大学土木工程学院, 建筑安全与节能教育部重点实验室, 长沙 410082
  • 2. 天津大学化工学院,天津市膜科学与海水淡化重点实验室,天津 300350
基金项目:

国家科技支撑计划项目(2012BAJ24B03)

摘要: 采用化学共沉淀法制备了磁性活性炭负载钴铁氧体(CoFe2O4@AC),用于催化过硫酸氢钾(PMS)产生SO4-·自由基降解水中罗丹明B(RhB)。采用SEM、HR-TEM、XRD、FTIR、XPS等测试手段对CoFe2O4@AC的表面物理化学特性进行了表征,考察了PMS投加量、RhB浓度、pH、温度对降解RhB的影响。实验结果表明:与AC/PMS、CoFe2O4/PMS相比,CoFe2O4@AC/PMS催化体系对RhB具有更高的降解效率,且适用于较宽的pH范围(pH=5.0~9.0);CoFe2O4@AC/PMS体系对RhB的降解随温度的升高而显著加快,其降解活化能为67.46 kJ·mol-1。降解机理研究结果表明,复合材料中的AC和Co(II)协同参与了催化PMS产生·OH和SO4-·的过程。总之,磁性CoFe2O4@AC不仅具有高效的催化效果而且易于从水中分离,对有机染料废水的处理有着良好的前景。

English Abstract

参考文献 (1)

目录

/

返回文章
返回