Ag3PO4-MnO2/g-C3N4非均相臭氧催化对页岩气钻井废水的深度处理

朱天菊, 陈春燕, 王兵, 任宏洋, 邹平, 向军. Ag3PO4-MnO2/g-C3N4非均相臭氧催化对页岩气钻井废水的深度处理[J]. 环境工程学报, 2018, 12(5): 1365-1371. doi: 10.12030/j.cjee.201709045
引用本文: 朱天菊, 陈春燕, 王兵, 任宏洋, 邹平, 向军. Ag3PO4-MnO2/g-C3N4非均相臭氧催化对页岩气钻井废水的深度处理[J]. 环境工程学报, 2018, 12(5): 1365-1371. doi: 10.12030/j.cjee.201709045
ZHU Tianju, CHEN Chunyan, WANG Bing, REN Hongyang, ZOU Ping, XIANG Jun. Advanced treatment of shale gas drilling wastewater by heterogeneous ozone catalysis of Ag3PO4-MnO2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1365-1371. doi: 10.12030/j.cjee.201709045
Citation: ZHU Tianju, CHEN Chunyan, WANG Bing, REN Hongyang, ZOU Ping, XIANG Jun. Advanced treatment of shale gas drilling wastewater by heterogeneous ozone catalysis of Ag3PO4-MnO2/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1365-1371. doi: 10.12030/j.cjee.201709045

Ag3PO4-MnO2/g-C3N4非均相臭氧催化对页岩气钻井废水的深度处理

  • 基金项目:

    国家科技重大专项(2016ZX05062)

Advanced treatment of shale gas drilling wastewater by heterogeneous ozone catalysis of Ag3PO4-MnO2/g-C3N4

  • Fund Project:
  • 摘要: 采用热缩聚合成法、水热法制备Ag3PO4-MnO2/g-C3N4三元复合催化剂。利用XRD和SEM对其进行结构表征,并考察催化剂用量、废水pH、臭氧投加量等因素对页岩气钻井废水深度处理效果的影响。结果表明,Ag3PO4-MnO2/g-C3N4三元复合催化剂中,立方晶型Ag3PO4、纳米纤维状MnO2与经模板剂制得的管孔状g-C3N4成功复合,改变了其晶面的有序性并增大了比表面积。通过复合提高了Ag3PO4的稳定性及其与MnO2协同作用对臭氧的催化活性。在催化剂投加量为0.5 g·L-1,废水pH为11,臭氧投加量为3.2 mg·min-1,反应时间为40 min的条件下,对预处理后的页岩气钻井废水(COD含量为1 076 mg·L-1)COD的去除率为85.1%,该复合催化剂重复使用5次后仍保持良好的活性和稳定性。
  • 加载中
  • [1] 朱天菊, 王兵, 谢红丽, 等. 土著水生植物对页岩气钻井废水中Cu和Pb的去除及富集特征[J]. 环境科学研究,2017,30(3):478-483 10.13198/j.issn.1001-6929.2017.01.22
    [2] 张悦, 王兵, 任宏洋.O3/Mn2O3对钻井废水多相催化臭氧化试验研究[J]. 环境科学学报,2015,35(10):3185-3192 10.13671/j.hjkxxb.2015.0075
    [3] 王兵, 周鋆, 任宏洋,等.MgO催化臭氧氧化降解苯酚机理研究[J]. 环境科学学报,2016,36(11):4009-4016 10.13671/j.hjkxxb.2016.0038
    [4] 张国涛, 万新华, 李伟, 等. 微量臭氧催化氧化深度处理煤气化废水[J]. 环境工程学报,2013,7(1):263-267
    [5] 段菁溦. 臭氧催化氧化在难降解有机物深度处理中的应用研究[D]. 北京: 清华大学,2014
    [6] 姜传佳. 活性炭载锰-钯催化剂的制备及其催化分解臭氧性能研究[D]. 北京: 清华大学,2011
    [7] KUMAR N, KONOVA P, NAYDENOV A, et al.Ag-modified H-Beta, H-MCM-41 and SiO2 : Influence of support, acidity and Ag content in ozone decomposition at ambient temperature[J].Catalysis Today,2007,119(1):342-346 10.1016/j.cattod.2006.08.048
    [8] OYAMA S T, ZHANG W, HEISIG C.Decomposition of ozone using carbon-supported metal oxide catalysts[J].Applied Catalysis B: Environmental,1997,14(1):117-129 10.1016/S0926-3373(97)00017-9
    [9] 吴张雄. 新型碳基有序介孔材料的合成、功能化及性质与应用[D]. 上海:复旦大学, 2011
    [10] 赵珊珊. 基于g-C3N4或石墨烯的催化材料的制备及性能研究[D]. 大连: 大连理工大学, 2013
    [11] IKHLAQ A, BROWN D R, KASPRZYK-HORDERN B.Mechanisms of catalytic ozonation: An investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water[J].Applied Catalysis B: Environmental,2013,129:437-449 10.1016/j.apcatb.2012.09.038
    [12] QI F, XU B, CHEN Z, et al.Catalytic ozonation of 2-isopropyl-3methoxypyrazine in water by γ-AlOOH and γ-Al2O3: Comparison of removalefficiency and mechanism[J].Chemical Engineering Journal,2013,219:527-536 10.1016/j.cej.2013.01.035
    [13] HUANG R H, LAN B Y, CHEN Z Y, et al.Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41[J].Chemical Engineering Journal,2012,180:19-24 10.1016/j.cej.2011.10.086
    [14] PUGAZHENTHIRAN N, SATHISHKUMAR P, MURUGESAN S, et al.Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles[J].Chemical Engineering Journal,2011,168(3):1227-1233 10.1016/j.cej.2011.02.020
    [15] CHEN Y H, HSIEH D C, SHANG N C.Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst[J].Journal of Hazardous Materials,2011,192(3):1017-1025 10.1016/j.jhazmat.2011.06.005
    [16] LIU B, LI A M, XIA M F, et al.Preparation of manganese oxide oupported on activated carbon and its application in catalytic ozonation of 4-chlorophenol[J].Advanced Materials Research,2012,538-541:2285-2288 10.4028/www.scientific.net/AMR.538-541.2285
    [17] LI L S,YE W Y, ZHANG Q Y, et al.Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J].Journal of Hazardous Materials,2009,170(1):411-416 10.1016/j.jhazmat.2009.04.081
    [18] ZHAO L, MA J, SUN Z Z, et al.Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese[J].Applied Catalysis B: Environmental,2008,83(3):256-264 10.1016/j.apcatb.2008.02.009
    [19] DONG Y, YANG H, HE K, et al.Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone[J].Applied Catalysis B: Environmental,2008,82(3/4):163-168 10.1016/j.apcatb.2008.01.023
    [20] ROSAL O, GONZALO M S, RODRíGUEZ A, et al.Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor[J].Chemical Engineering Journal,2010,165(3):806-812 10.1016/j.cej.2010.10.020
    [21] ZHAI X, CHEN Z L, ZHAO S Q, et al.Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders[J].Journal of Environmental Sciences,2010,22(10):1527-1533 10.1016/S1001-0742(09)60284-9
    [22] 张鑫鑫,徐莉,李磊,等.微量Ag3PO4改性g-C3N4的可见光催化活性研究[J]. 河北科技大学学报,2015,36(3):255-262 10.7535/hbkd.2015yx03006
    [23] 陈路呀. 基于石墨烯或类石墨氮化碳光催化剂的制备、表征和及其光催化性能的研究[D]. 广州: 华南理工大学, 2014
    [24] 李军奇, 郭占云, 王德方, 等. 立方体形Ag3PO4可见光光催化剂的制备及其性能研究[J]. 陕西科技大学学报,2013,31(4):24-28
    [25] CHAI Y Y, WANG L, REN J, et al.A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants[J].Applied Surface Science,2015,324:212-220 10.1016/j.apsusc.2014.09.207
    [26] YAN S C, LI Z S, ZOU Z G.Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J].Langmuir,2009,25(17):10397-10401 10.1021/la900923z
    [27] WANG X, CHEN X, THOMAS A, et al.Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material[J].Advanced Materials,2010,21(16):1609-1612 10.1002/adma.200802627
    [28] 朱鹏飞, 万寅, 刘梅, 等. 可见光催化剂Ag3PO4/海泡石的制备及降解染料废水性能[J]. 安全与环境学报,2016,16(4):293-297
  • 加载中
计量
  • 文章访问数:  2446
  • HTML全文浏览数:  2023
  • PDF下载数:  401
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

Ag3PO4-MnO2/g-C3N4非均相臭氧催化对页岩气钻井废水的深度处理

  • 1. 西南石油大学化学化工学院,成都 610500
基金项目:

国家科技重大专项(2016ZX05062)

摘要: 采用热缩聚合成法、水热法制备Ag3PO4-MnO2/g-C3N4三元复合催化剂。利用XRD和SEM对其进行结构表征,并考察催化剂用量、废水pH、臭氧投加量等因素对页岩气钻井废水深度处理效果的影响。结果表明,Ag3PO4-MnO2/g-C3N4三元复合催化剂中,立方晶型Ag3PO4、纳米纤维状MnO2与经模板剂制得的管孔状g-C3N4成功复合,改变了其晶面的有序性并增大了比表面积。通过复合提高了Ag3PO4的稳定性及其与MnO2协同作用对臭氧的催化活性。在催化剂投加量为0.5 g·L-1,废水pH为11,臭氧投加量为3.2 mg·min-1,反应时间为40 min的条件下,对预处理后的页岩气钻井废水(COD含量为1 076 mg·L-1)COD的去除率为85.1%,该复合催化剂重复使用5次后仍保持良好的活性和稳定性。

English Abstract

参考文献 (28)

目录

/

返回文章
返回