不同电子受体浓度对反硝化除磷的影响及动力学特性

张淼, 袁庆, 黄棚兰, 於蒙, 薛禹, 何成达, 彭永臻. 不同电子受体浓度对反硝化除磷的影响及动力学特性[J]. 环境工程学报, 2018, 12(3): 830-838. doi: 10.12030/j.cjee.201709064
引用本文: 张淼, 袁庆, 黄棚兰, 於蒙, 薛禹, 何成达, 彭永臻. 不同电子受体浓度对反硝化除磷的影响及动力学特性[J]. 环境工程学报, 2018, 12(3): 830-838. doi: 10.12030/j.cjee.201709064
ZHANG Miao, YUAN Qing, HUANG Penglan, YU Meng, XUE Yu, HE Chengda, PENG Yongzhen. Effect of different electron acceptor concentrations on denitrifying phosphorus removal and dynamic characteristic[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 830-838. doi: 10.12030/j.cjee.201709064
Citation: ZHANG Miao, YUAN Qing, HUANG Penglan, YU Meng, XUE Yu, HE Chengda, PENG Yongzhen. Effect of different electron acceptor concentrations on denitrifying phosphorus removal and dynamic characteristic[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 830-838. doi: 10.12030/j.cjee.201709064

不同电子受体浓度对反硝化除磷的影响及动力学特性

  • 基金项目:

    江苏省自然科学基金资助项目(BK20170506)

    扬州大学本科生科技创新项目

    横向项目双污泥反硝化除磷工艺强化脱氮除磷及应用(204032264)

Effect of different electron acceptor concentrations on denitrifying phosphorus removal and dynamic characteristic

  • Fund Project:
  • 摘要: 以A2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO3--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO3--N:10、20、30、40、50 mg·L-1)下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO3--N浓度为30~40 mg·L-1时,NO3--N和PO43--P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)-1、1.81~6.08 mg·(g·h)-1(以VSS计)范围内波动,且NO3--N/PO43--P比值可间接反映DPAOs生物活性。
  • 加载中
  • [1] MEINHOLD J,ARNOLD E,ISAACS S.Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J].Water Research,1999, 33(8):1871-1883 10.1016/S0043-1354(98)00411-4
    [2] ZHANG W T, HOU F, PENG Y Z, et al.Optimizing aeration rate in an external nitrification–denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment[J].Chemical Engineering Journal,2014, 245:342-347 10.1016/j.cej.2014.01.045
    [3] PENG Y Z, GE S J.Enhanced nutrient removal in three types of step feeding process from municipal wastewater[J].Bioresource Technology,2011, 102(11):6405-6413 10.1016/j.biortech.2011.03.043
    [4] 张淼, 何成达, 王淑莹, 等.A2/O+MBBR系统的快速启动及反硝化除磷特性[J].四川大学学报(工程科学版),2017,49(2):240-247
    [5] MERZOUKI M, BERNET N, DELGENES J P, et al.Biological denitrifying phosphorus removal in SBR: Effect of added nitrate concentration and sludge retention time[J].Water Science and Technology,2001, 43(3):191-194
    [6] 刘建广, 付昆明, 杨义飞, 等.不同电子受体对反硝化除磷菌缺氧吸磷的影响[J].环境科学,2007, 28(7):1472-1476
    [7] 杨文婷,沈耀良.SBR中反硝化聚磷菌的培养驯化研究[J].环境科学与技术,2009, 32(8):6-8
    [8] ZHOU S Q, ZHANG X J, FENG L Y.Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria[J].Bioresource Technology,2010, 101(6):1603-1610 10.1016/j.biortech.2009.09.032
    [9] GE S J, PENG Y Z, QIU S, et al.Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process[J].Water Research,2014, 55(2):95-105 10.1016/j.watres.2014.01.058
    [10] WACHTMEISTER A, KUBA T, LOOSDRECHT M C M V, et al.A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J].Water Research,1997, 31(3):471-478 10.1016/S0043-1354(96)00281-3
    [11] FRANSONM A H.American Public Health Association American Water Works Association Water Environment Federation[M].Methods, Washington DC: American Public Health Association, 1995
    [12] OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al.Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].Journal of Chromatography A,2005, 1070(1/2):131-136 10.1016/j.chroma.2005.02.020
    [13] WANG Y Y, PENG Y Z, STEPHENSON T.Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process[J].Bioresource Technology,2009, 100(14):3506-3512 10.1016/j.biortech.2009.02.026
    [14] WANG Y Y, GENG J J, REN Z J, et al.Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J].Bioresource Technology,2011, 102(10):5674-5684 10.1016/j.biortech.2011.02.080
    [15] ZHOU Y, OEHMEN A, LIM M, et al.The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J].Water Research,2011, 45(15):4672-4682 10.1016/j.watres.2011.06.025
    [16] JABARI P, MUNZ G, OLESZKIEWICZ J A.Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor[J].Chemosphere,2014, 109:20-27 10.1016/j.chemosphere.2014.03.002
    [17] 傅金祥, 王颖, 池福强, 等.电子受体质量浓度对反硝化除磷过程的影响[J].沈阳建筑大学学报(自然科学版),2007, 23(5):806-809 10.3969/j.issn.2095-1922.2007.05.024
    [18] BASSIN J P, KLEEREBEZEM R, DEZOTTI M, et al.Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J].Water Research,2012, 46(12):3805-3816 10.1016/j.watres.2012.04.015
    [19] TEMMINK H, PETERSEN B, ISAACS S, et al.Recovery of biological phosphorus removal after periods of low organic loading[J].Water Science and Technology,1996, 34(1/2):1-8 10.1016/0273-1223(96)00488-X
    [20] GE S J, WANG S Y, CAO X, et al.Achievement and maintenance of denitrifying phosphorus removal in step feed nutrient removal process[J].CIESC Journal,2011, 62(9):2615-2622
    [21] WONG P Y, CHENG K Y, KAKSONEN A H, et al.A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms[J].Water Research,2013, 47(17):6488-6495 10.1016/j.watres.2013.08.023
    [22] COMA M, PUIG S, BALAGUER M D, et al.The role of nitrate and nitrite in a granular sludge process treating low-strength wastewater[J].Chemical Engineering Journal,2010, 164(1):208-213 10.1016/j.cej.2010.08.063
  • 加载中
计量
  • 文章访问数:  3068
  • HTML全文浏览数:  2629
  • PDF下载数:  430
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

不同电子受体浓度对反硝化除磷的影响及动力学特性

  • 1. 扬州大学环境科学与工程学院,扬州225127
  • 2. 扬州市洁源排水有限公司,扬州225002
  • 3. 北京工业大学国家工程实验室,北京市水质科学与水环境恢复工程重点实验室,北京 100124
基金项目:

江苏省自然科学基金资助项目(BK20170506)

扬州大学本科生科技创新项目

横向项目双污泥反硝化除磷工艺强化脱氮除磷及应用(204032264)

摘要: 以A2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO3--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO3--N:10、20、30、40、50 mg·L-1)下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO3--N浓度为30~40 mg·L-1时,NO3--N和PO43--P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)-1、1.81~6.08 mg·(g·h)-1(以VSS计)范围内波动,且NO3--N/PO43--P比值可间接反映DPAOs生物活性。

English Abstract

参考文献 (22)

目录

/

返回文章
返回