基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0

李柳柳, 闫伯骏, 崔建升, 邢奕, 路培, 李千里, 王梦思. 基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0[J]. 环境工程学报, 2018, 12(4): 1083-1091. doi: 10.12030/j.cjee.201708060
引用本文: 李柳柳, 闫伯骏, 崔建升, 邢奕, 路培, 李千里, 王梦思. 基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0[J]. 环境工程学报, 2018, 12(4): 1083-1091. doi: 10.12030/j.cjee.201708060
LI Liuliu, YAN Bojun, CUI Jiansheng, XING Yi, LU Pei, LI Qianli, WANG Mengsi. Optimization of Hg0 removal with H2O2/Fe3+ from sintering flue gas based on RSM model[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1083-1091. doi: 10.12030/j.cjee.201708060
Citation: LI Liuliu, YAN Bojun, CUI Jiansheng, XING Yi, LU Pei, LI Qianli, WANG Mengsi. Optimization of Hg0 removal with H2O2/Fe3+ from sintering flue gas based on RSM model[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1083-1091. doi: 10.12030/j.cjee.201708060

基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0

  • 基金项目:

    国家自然科学基金资助项目(U1560110)

    国家重点研发计划(2017YFC0210301)

    中央高校基本科研业务费专项资助

Optimization of Hg0 removal with H2O2/Fe3+ from sintering flue gas based on RSM model

  • Fund Project:
  • 摘要: 烧结烟气中重金属汞的含量较高,湿法氧化脱除零价汞(Hg0)是当前最受关注的技术之一,但该氧化脱除技术的操作条件仍需优化。为此,以响应曲面法对H2O2/Fe3+氧化脱除Hg0进行了研究和优化。首先参照单因素实验结果,利用Box-Behnken设计(BBD)的3因素3水平实验研究了溶液温度、H2O2浓度和Fe3+浓度3个条件的交互作用并进行分析和优化,发现以H2O2/Fe3+氧化脱除Hg0的最佳条件为溶液温度41.78 °C、H2O2浓度0.55 mol·L-1和Fe3+浓度0.007 mol·L-1,在此最佳条件下Hg0的脱除效率可高达87.28%。最后,在该条件下进行了验证研究,实验结果表明最优条件下Hg0的脱除效率为87.93%±0.87%,与模型预测值基本吻合,表明基于响应曲面分析法所得出的最佳工艺参数准确可靠,对利用H2O2/Fe3+脱除钢铁行业烧结烟气中Hg0的条件优化具有较好的指导作用。
  • 加载中
  • [1] KIRBY T.UN agrees new treaty to reduce harm from mercury[J].Lancet, 2013,381:362-374 10.1016/S0140-6736(13)60153-1
    [2] SELIN N E.Global biogeochemical cycling of mercury: a review[J].Annu Review of Environment & Resources, 2009, 34:43-63 10.1146/annurev.environ.051308.084314
    [3] ZHANG L, WANG S, WANG L, et al.Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China[J].Environmental Science and Technology, 2015, 49(5): 3185-3194 10.1021/es504840m
    [4] 刘珺,薛建明,徐月阳,等.燃煤电厂静电除尘器协同控制汞排放[J].环境工程学报,2014,8(11):4853-4857
    [5] SUBIR M, ARIYA P A, DASTOOR A P.A review of the sources of uncertainties in atmospheric mercury modeling II.Mercury surface and heterogeneous chemistry:A missing link[J].Atmospheric Environment, 2012, 46(1):1-10 10.1016/j.atmosenv.2011.07.047
    [6] CARPI A.Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere[J].Water, Air & Soil Pollution, 1997, 98(3/4):241-254 10.1007/BF02047037
    [7] 陈强,刁永发,范红兵.飞灰-氢氧化钙/聚苯硫醚(PPS)滤料对烟气中单质汞的脱除[J].环境工程学报,2015,9(3):1349-1354
    [8] MASON R P.Mercury Emission from Natural Processes and Their Importance in the Global Mercury Cycle[M].Boston, MA Springer US, 2009:173-191
    [9] QU Z, XIE J, XU H, et al.Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature[J].Energy & Fuels, 2015, 29(10):6187-6196 10.1021/acs.energyfuels.5b00868
    [10] TIAN L, LI C, LI Q, et al.Removal of elemental mercury by activated carbon impregnated with CeO2[J].Fuel, 2009, 88(9):1687-1691 10.1016/j.fuel.2009.01.022
    [11] HOU W, ZHOU J, QI P, et al.Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J].Chemical Engineering Journal, 2014, 241:131-137 10.1016/j.cej.2013.12.047
    [12] LI H, WU C, LI Y, et al.Superior activity of MNOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J].Applied Catalysis B Environmental, 2012, 111-112:381-388 10.1016/j.apcatb.2011.10.021
    [13] LI H, LI Y, WU C, et al.Oxidation and capture of elemental mercury over SiO2-TiO2-V2O catalysts in simulated low-rank coal combustion flue gas[J].Chemical Engineering Journal, 2011, 169(1):186-193 10.1016/j.cej.2011.03.003
    [14] 张星,李彩亭,樊小鹏,等.CeCl3活性炭纤维去除模拟烟气中单质汞的实验研究[J].中国环境科学,2012,32(5):816-821 10.3969/j.issn.1000-6923.2012.05.007
    [15] FAN X P, LI C T, ZENG G M, et al.The effect of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas[J].Fuel Processing Technology, 2012, 104:325-331 10.1016/j.fuproc.2012.06.003
    [16] FANG P, CEN C, WANG X, et al.Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea+KMnO4 solution[J].Fuel Processing Technology, 2013, 106(2):645-653 10.1016/j.fuproc.2012.09.060
    [17] WANG Z, PEHKONEN S O.Oxidation of elemental mercury by aqueous bromine: Atmospheric implications[J].Atmospheric Environment, 2004, 38(22):3675-3688 10.1016/j.atmosenv.2004.02.059
    [18] BYUN Y, HAMILTON L P, TU X, et al.Formation of chlorinated species through reaction of SO2 with NaClO2 powder and their role in the oxidation of NO and Hg0[J].Environmental Science and Pollution Research, 2014, 21(13):8052-8058 10.1007/s11356-014-2669-2
    [19] ZHAO Y, MA X, LIU S, et al.Experiments on and mechanism of simultaneous removal of Hg0, SO2 and NO from flus gas using NaClO2 solution[J].Environmental Technology, 2009, 30(3):277-282 10.1080/09593330802573795
    [20] LIU Y, PAN J, WANG Q, et al.Removal of Hg0 from containing-SO2/NO flue gas by ultraviolet/H2O2 process in a novel photochemical reactor[J].AIChE Journal, 2014, 60(6):2275-2285 10.1002/aic.14388
    [21] ZHANG B, ZHONG Z, DING K, et al.Photooxidative removal of Hg0 from simulated flue gas using UV/H2O2 advanced oxidation process: Influence of operational parameters[J].Korean Journal of Chemical Engineering, 2014, 31(1):56-61 10.1007/s11814-013-0179-4
    [22] ZHAO Y, HAO Y, ZHANG P, et al.An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8[J].Fuel, 2014, 136(10):113-121 10.1016/j.fuel.2014.07.046
    [23] 李俊华,王羽,司文哲.燃煤烟气中零价汞的催化氧化技术研究[C].2015年汞污染防治与履行国际汞公约研讨会,2015
    [24] 段雷,万奇,贺克斌,等. 一种用于燃煤电厂烟气单质汞氧化的催化剂及其制备方法:ZL 201010176293.0.B[P]. 2010-09-15
    [25] 石文天,刘玉德,王西彬,等.微细铣削表面粗糙度预测与试验[J].农业机械学报,2010, 41(1):211-215 10.3969/j.issn.1000-1298.2010.01.040
    [26] MONTGOMERY D C.Design and Analysis of Experiments[M].New York: John Wiley, 1991
    [27] WP K, BM V.Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems[J].Environmental Science & Technology, 2003, 37(6):1150-1158 10.1021/es020874g
    [28] NTAMPEGLIOTIS K, RIGA A, KARAYANNIS V, et al.Decolorization kinetics of Procion H-EXL dyes from textile dyeing using Fenton-like reactions[J].Journal of Hazardous Materials, 2006, 136(1):75-84 10.1016/j.jhazmat.2005.11.016
    [29] ZHAO L, ROCHELLE G T.Hg absorption in aqueous permanganate [J].AIChE Journal. 1996, 42(12):3559-3562 10.1002/aic.690421227
    [30] ZHAO Y, YAO J, MA X.Absorption behavior and removal of gaseous element mercury by sodium chlorite solution[J].Journal of Environmental Engineering, 2012, 138(6):620-624 10.1061/(ASCE)EE.1943-7870.0000519
    [31] LIU Y, ZHANG J, SHENG C, et al.Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J].Chemical Engineering Journal, 2010, 162(3):1006-1011 10.1016/j.cej.2010.07.009
    [32] SASMAZ E, ABOUND S, WILCOX J.Hg binding on Pd binary alloys and overlays[J].Journal of Physical Chemistry C, 2009, 113(18):7813-7820 10.1021/jp8112478
    [33] HAN Y, FAN M, RUSSEL A G.New insights into synergistic effects and active species toward Hg0 emission control by Fe(VI) absorbent[J].Fuel, 2015, 140(15):309-316 10.1016/j.fuel.2014.09.072
    [34] FAN H J, HUANG S T, CHUNG W H, et al.Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification[J].Journal of Hazardous Materials, 2009, 171(1):1032-1044 10.1016/j.jhazmat.2009.06.117
    [35] DANESHVAR N, BEHNAJADY M A, ASGHAR Y Z.Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence of operational parameters and reaction mechanism[J].Journal of Hazardous Materials, 2007, 139(2):275-279 10.1016/j.jhazmat.2006.06.045
    [36] LIU Y, ZANG J, PAN J, et al.Investigation on removal of NO from SO2- containing simulated flue gas by UV/Fenton-like reaction[J].Energy & Fuels, 2012, 26(9):5430-5436 10.1021/ef3008568
    [37] 廖素凤,陈剑雄,杨志坚,等.响应曲面分析法优化葡萄籽原花青素提取工艺的研究[J].热带作物学报,2011,32(3):554-559 10.3969/j.issn.1000-2561.2011.03.038
    [38] BHATTACHARYYA A, DUTTA S, DE P, et al.Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: Optimization of immobilization condition and modeling of removal study[J].Bioresource Technology, 2010, 101(24):9421-9428 10.1016/j.biortech.2010.06.126
    [39] LITTLE T M, HILLS F.J.Agricultural Experimental Design and Analysis[M].New York: John Wiley, 1978
    [40] LIU Y, WANG Q.Removal of element mercury from flue gas by thermally activated ammonium persulfate in a bubble column reaction[J].Environmental Science & Technology, 2014, 48:12181-12189 10.1021/es501966h
    [41] XING Y, YAN BJ, LU P, et al.Purification of Hg0 from flue gas by wet oxidation methodand its mechanism: A review[J].Environmental Science Pollution Research, 2017, 24(34):26310-26323 10.1007/s11356-017-0480-6
  • 加载中
计量
  • 文章访问数:  3547
  • HTML全文浏览数:  3157
  • PDF下载数:  392
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

基于响应曲面法优化H2O2/Fe3+脱除烧结烟气中的Hg0

  • 1. 河北科技大学环境科学与工程学院,石家庄 050018
  • 2. 北京科技大学能源与环境工程学院,北京 100083
  • 3. 北京市工业典型污染物资源化处理重点实验室,北京 100083
  • 4. 河北省廊坊市环境保护局,廊坊 065000
基金项目:

国家自然科学基金资助项目(U1560110)

国家重点研发计划(2017YFC0210301)

中央高校基本科研业务费专项资助

摘要: 烧结烟气中重金属汞的含量较高,湿法氧化脱除零价汞(Hg0)是当前最受关注的技术之一,但该氧化脱除技术的操作条件仍需优化。为此,以响应曲面法对H2O2/Fe3+氧化脱除Hg0进行了研究和优化。首先参照单因素实验结果,利用Box-Behnken设计(BBD)的3因素3水平实验研究了溶液温度、H2O2浓度和Fe3+浓度3个条件的交互作用并进行分析和优化,发现以H2O2/Fe3+氧化脱除Hg0的最佳条件为溶液温度41.78 °C、H2O2浓度0.55 mol·L-1和Fe3+浓度0.007 mol·L-1,在此最佳条件下Hg0的脱除效率可高达87.28%。最后,在该条件下进行了验证研究,实验结果表明最优条件下Hg0的脱除效率为87.93%±0.87%,与模型预测值基本吻合,表明基于响应曲面分析法所得出的最佳工艺参数准确可靠,对利用H2O2/Fe3+脱除钢铁行业烧结烟气中Hg0的条件优化具有较好的指导作用。

English Abstract

参考文献 (41)

目录

/

返回文章
返回