固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除

冯永, 王茹, 陈丽梅. 固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除[J]. 环境工程学报, 2018, 12(4): 1071-1082. doi: 10.12030/j.cjee.201709007
引用本文: 冯永, 王茹, 陈丽梅. 固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除[J]. 环境工程学报, 2018, 12(4): 1071-1082. doi: 10.12030/j.cjee.201709007
FENG Yong, WANG Ru, CHEN Limei. Performance of suspension bioreactor with fixed Rhodopseudomonas palustris for removal of formaldehyde in indoor[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1071-1082. doi: 10.12030/j.cjee.201709007
Citation: FENG Yong, WANG Ru, CHEN Limei. Performance of suspension bioreactor with fixed Rhodopseudomonas palustris for removal of formaldehyde in indoor[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1071-1082. doi: 10.12030/j.cjee.201709007

固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除

  • 基金项目:

    国家自然科学基金资助项目(31560071)

Performance of suspension bioreactor with fixed Rhodopseudomonas palustris for removal of formaldehyde in indoor

  • Fund Project:
  • 摘要: 利用海藻酸钠及羧甲基纤维素包埋沼泽红假单胞菌海绵作为吸附剂,对甲醛进行吸收处理,其动力学行为与多孔材料相似。用这种海绵组装悬浮式生物反应器,考察其去除室内甲醛污染的性能,结果表明,海绵体积和进风量是影响反应器甲醛净化效率的关键因素。装入6 L海绵和6 L水的反应器在进风量最大(7.8 m3·min-1)时,对室内空气污染浓度为2.0 mg·m-3甲醛的净化效率约为80%。分析水箱水溶液甲醛浓度的变化,结果表明含有甲醛的空气吹入反应器后溶解于水,然后被包埋的光合菌吸收。反应器在污染甲醛浓度为3.5 mg·m-3的试剂室内运行过程中,其甲醛去除率逐渐上升,室内污染甲醛浓度逐渐降低,运行31 d后室内甲醛浓度降为0.04 mg·m-3(低于国标值),其净化甲醛污染的CADR(clean air delivery rate)值达到481.4 m3·h-1,沼泽红假单胞菌细胞的存活率为98%,说明固定沼泽红假单胞菌具有应用于室内甲醛污染去除的应用潜力。
  • 加载中
  • [1] NAYA M, NAKANISHI J.Risk assessment of formaldehyde for the general population in Japan[J].Regulatory Toxicology & Pharmacology, 2005, 43(3):232-248 10.1016/j.yrtph.2005.08.002
    [2] SHINOHARA N, MIZUKOSHI A, YANAGISAWA Y.Identification of responsible volatile chemicals that induce hypersensitive reactions to multiple chemical sensitivity patients[J].Journal of Exposure Analysis & Environmental Epidemiology, 2004, 14(1):84-91 10.1038/sj.jea.7500303
    [3] WIPPERMANN U, FLIEGMANN J, BAUW G, et al.Maize glutathione-dependent formaldehyde dehydrogenase: Protein sequence and catalytic properties[J].Planta, 1999, 208(1):12-18 10.1007/s004250050529
    [4] WU F, DAVID J, CLIFFORD M, et al.Improving indoor environmental quality for public health: Impediments and policy recommendations[J].Environmental Health Perspectives, 2007, 115(6):953-957 10.1289/ehp.8986
    [5] BERNSTEIN J, ALEXIS N, BACCHUS H, et al.The health effects of non-industrial indoor air pollution[J].Journal of Allergy & Clinical Immunology, 2008, 121(3):585-591 10.1016/j.jaci.2007.10.045
    [6] SHIRAISHI F, YAMAGUCHI S, OHBUCHI Y.A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus[J].Chemical Engineering Science, 2003, 58(3/4/5/6):929-934 10.1016/S0009-2509(02)00630-9
    [7] LU Y, WANG D, MA C, et al.The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde[J].Building & Environment, 2010, 45(3):615-621 10.1016/j.buildenv.2009.07.019
    [8] 张韦, 宋中邦, 陈丽梅. 甲基营养微生物的甲醛代谢途径及其在环境生物技术中的应用[J]. 生命科学,2012, 24(3):266-273
    [9] SONG Z, ORITA I, FEI Y, et al.Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri, in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde[J].Biotechnology Letters, 2010, 32(10):1541-1548 10.1007/s10529-010-0324-7
    [10] YURIMOTO H, KATO N, SAKAI Y.Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism[J].Chemical Record, 2005, 5(6):367–375 10.1002/tcr.20056
    [11] XU Z J, NA Q, WANG J G, et al.Formaldehyde biofiltration as affected by spider plant[J].Bioresource Technology, 2010, 101(18):6930-6934 10.1016/j.biortech.2010.03.128
    [12] WANG Z, ZHANG J S.Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality[J].Building & Environment, 2011, 46(3):758-768 10.1016/j.buildenv.2010.10.008
    [13] WANG Z, PEI J, ZHANG J S.Modeling and simulation of an activated carbon-based botanical air filtration system for improving indoor air quality[J].Building & Environment, 2012, 54(12):109-115 10.1016/j.buildenv.2012.02.011
    [14] FULAZZAKY M A, TALAIEKHOZANI A, MAJID M Z A.Formaldehyde removal mechanisms in a biotrickling filter reactor[J].Ecological Engineering, 2016, 90:77-81 10.1016/j.ecoleng.2016.01.064
    [15] 唐雅琴, 黄兵, 刘仪柯. 光合细菌微生物产氢研究进展[J]. 安徽农业科学, 2009(2):466-468
    [16] 杨绍斌. 复合光合细菌对鱼塘水氨态氮H2S的去除效应[J]. 环境科学与技术, 2005, 28(4):25-26
    [17] NAGADOMI H, KITAMURA T, WATANABE M, et al.Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria[J].Biotechnology Letters, 2000, 22(17):1369-1374 10.1023/A:1005688229783
    [18] NAGADOMI H, TAKAHASI T, SASAKI K, et al.Simultaneous removal of chemical oxygen demand and nitrate in aerobic treatment of sewage wastewater using an immobilized photosynthetic bacterium of porous ceramic plates[J].World Journal of Microbiology & Biotechnology, 2000, 16(1):57-62 10.1023/A:1008947416198
    [19] 常会庆, 王世华, 寇太记,等. 固定化光合细菌对水体富营养化的去除效果[J]. 水资源保护, 2010, 26(3):64-67
    [20] 徐向阳,郑平,俞秀娥,等. 固定化光合细菌处理有机废水过程产氢的研究:Ⅱ.红假单胞菌菌株D利用有机物光产氢的特性[J]. 太阳能学报,1993,14(4):288-294
    [21] DE-BASHAN L E, BASHAN Y.Immobilized microalgae for removing pollutants: Review of practical aspects[J].Bioresource Technology, 2010, 101(6):1611-1627 10.1016/j.biortech.2009.09.043
    [22] JEONG S K, CHO J S, KONG I S, et al.Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing[J].Biotechnology & Bioprocess Engineering, 2009, 14(2):238-247 10.1007/s12257-008-0195-0
    [23] 李小菊. 制药废水的厌氧-好氧生物处理研究[D]. 天津:南开大学, 2005
    [24] 金绍黑. 有机污水微生物处理技术[J]. 技术与市场月刊, 2005(7):26
    [25] DELHOMENIE M C, BIBEAU L, GENDRON J, et al.A study of clogging in a biofilter treating toluene vapors[J].Chemical Engineering Journal, 2003, 94(3):211-222 10.1016/S1385-8947(03)00052-4
    [26] ILIUTA I, LARACHI F.Transient biofilter aerodynamics and clogging for VOC degradation[J].Chemical Engineering Science, 2004, 59(16):3293-3302 10.1016/j.ces.2004.05.004
    [27] RYU H W, CHO K S, CHUNG D J.Relationships between biomass, pressure drop, and performance in a polyurethane biofilter[J].Bioresource Technology, 2010, 101(6):1745-51 10.1016/j.biortech.2009.10.018
    [28] HUANG J S, JIH C G, SUNG T J.Performance enhancement of suspended-growth reactors with phototrophs[J].Journal of Environmental Engineering, 1999, 125:501-507 10.1061/(ASCE)0733-9372(1999)125:6(501)
    [29] NEAL A B, LOEHR R C.Use of biofilters and suspended-growth reactors to treat VOCs[J].Waste Management, 2000, 20(1):59-68 10.1016/S0956-053X(99)00297-4
    [30] CHEN X, QIAN W, KONG L, et al.Performance of a suspended biofilter as a new bioreactor for removal of toluene[J].Biochemical Engineering Journal, 2015, 98:56-62 10.1016/j.bej.2015.02.025
    [31] 闻春博, 雷中方. 活性炭/沸石投加型活性污泥工艺的研究进展[J]. 环境科学与管理, 2008, 33(1):86-89
    [32] 曹斌, 王晓昌, 王恩让,等. 复合生物反应器处理城市污水的试验研究[J]. 给水排水, 2003, 29(12):28-31 10.3969/j.issn.1002-8471.2003.12.010
    [33] SIEFERT E, IRGENS R L, PFENNIG N.Phototrophic purple and green bacteria in a sewage treatment plant.[J].Applied & Environmental Microbiology, 1978, 35(1):38-44
    [34] 丁成. 固定化光合细菌对含酚废水的生物降解试验[J]. 水资源保护,2008,24(6):93-95
    [35] MADUKASI E I, CHUNHUA H, ZHANG G.Isolation and application of a wild strain photosynthetic bacterium to environmental waste management[J].International Journal of Environmental Science & Technology, 2011, 8(3):513-522 10.1007/BF03326237
    [36] 雷玉珠, 李昆志. 一株光合细菌的分离鉴定及其净化甲醛能力的研究[J]. 中国微生态学杂志, 2017, 29(3):261-267
    [37] 雷玉珠. 光合细菌分离鉴定及其应用研究[D]. 昆明:昆明理工大学, 2017
    [38] TIWARI A.Removal of Chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose[J].Journal of Dispersion Science and Technology, 2011, 32(8):1075-1082 10.1080/01932691003659403
    [39] DEWANGAN T, TIWARI A, BAJPAI A K.Adsorption of Hg(II) ions onto binary biopolymeric beads of carboxymethyl cellulose and alginate[J].Journal of Dispersion Science and Technology, 2010, 31(6):844-851 10.1080/01932690903212941
    [40] PERSIDSKY M D, BAILLIE G S.Fluorometric test of cell membrane integrity[J].Cryobiology, 1977, 14(3):322-331 10.1016/0011-2240(77)90179-1
    [41] KRISHAN A.Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining[J].Journal of Cell Biology, 1975, 66(1):188-193 10.1083/jcb.66.1.188
    [42] 左卫元, 仝海娟, 史兵方. 改性活性炭对废水中甲醛的吸附研究[J]. 安全与环境学报, 2015, 15(1):188-192 10.13637/j.issn.1009-6094.2015.01.039
    [43] LU N, PEI J, ZHAO Y, et al.Performance of a biological degradation method for indoor formaldehyde removal[J].Building & Environment, 2012, 57:253-258 10.1016/j.buildenv.2012.05.007
    [44] WANG Z, ZHANG J S.Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality[J].Building & Environment, 2011, 46(3):758-768 10.1016/j.buildenv.2010.10.008
    [45] RAGHUVANSHI S, BABU B V.Experimental studies and kinetic modeling for removal of methyl ethyl ketone using biofiltration[J].Bioresource Technology, 2009, 100(17):3855-3861 10.1016/j.biortech.2009.03.025
    [46] PLAISANCE H, BLONDEL A, DESAUZIERS V, et al.Field investigation on the removal of formaldehyde in indoor air[J].Building & Environment, 2013, 70:277-283 10.1016/j.buildenv.2013.08.032
    [47] FULAZZAKY M A.Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column[J].Chemical Engineering Journal, 2011, 166(3):832-840 10.1016/j.cej.2010.11.052
    [48] XU Z, HOU H.Formaldehyde removal from air by a biodegradation system[J].Bulletin of Environmental Contamination & Toxicology, 2010, 85(1):28-31 10.1007/s00128-010-9975-2
    [49] 欧阳科, 谢珊, 刘辉. 曝气量对膜生物反应器污泥特性和膜污染的影响[J]. 中国给水排水, 2011, 27(13):19-22
  • 加载中
计量
  • 文章访问数:  3970
  • HTML全文浏览数:  3415
  • PDF下载数:  347
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

固定沼泽红假单胞菌构建悬浮式生物反应器对室内甲醛的去除

  • 1. 昆明理工大学生命科学与技术学院,昆明 650500
基金项目:

国家自然科学基金资助项目(31560071)

摘要: 利用海藻酸钠及羧甲基纤维素包埋沼泽红假单胞菌海绵作为吸附剂,对甲醛进行吸收处理,其动力学行为与多孔材料相似。用这种海绵组装悬浮式生物反应器,考察其去除室内甲醛污染的性能,结果表明,海绵体积和进风量是影响反应器甲醛净化效率的关键因素。装入6 L海绵和6 L水的反应器在进风量最大(7.8 m3·min-1)时,对室内空气污染浓度为2.0 mg·m-3甲醛的净化效率约为80%。分析水箱水溶液甲醛浓度的变化,结果表明含有甲醛的空气吹入反应器后溶解于水,然后被包埋的光合菌吸收。反应器在污染甲醛浓度为3.5 mg·m-3的试剂室内运行过程中,其甲醛去除率逐渐上升,室内污染甲醛浓度逐渐降低,运行31 d后室内甲醛浓度降为0.04 mg·m-3(低于国标值),其净化甲醛污染的CADR(clean air delivery rate)值达到481.4 m3·h-1,沼泽红假单胞菌细胞的存活率为98%,说明固定沼泽红假单胞菌具有应用于室内甲醛污染去除的应用潜力。

English Abstract

参考文献 (49)

目录

/

返回文章
返回