低浓度三氯生废水的电化学去除效能

孙天宇, 朱兆连, 牛荘, 周笑, 鲍扬, 王海玲. 低浓度三氯生废水的电化学去除效能[J]. 环境工程学报, 2018, 12(3): 824-829. doi: 10.12030/j.cjee.201707239
引用本文: 孙天宇, 朱兆连, 牛荘, 周笑, 鲍扬, 王海玲. 低浓度三氯生废水的电化学去除效能[J]. 环境工程学报, 2018, 12(3): 824-829. doi: 10.12030/j.cjee.201707239
SUN Tianyu, ZHU Zhaolian, NIU Zhuang, ZHOU Xiao, BAO Yang, WANG Hailing. Electrochemical removal efficiency of low concentration triclosan wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 824-829. doi: 10.12030/j.cjee.201707239
Citation: SUN Tianyu, ZHU Zhaolian, NIU Zhuang, ZHOU Xiao, BAO Yang, WANG Hailing. Electrochemical removal efficiency of low concentration triclosan wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 824-829. doi: 10.12030/j.cjee.201707239

低浓度三氯生废水的电化学去除效能

  • 基金项目:

    国家自然科学基金资助项目(51308284)

Electrochemical removal efficiency of low concentration triclosan wastewater

  • Fund Project:
  • 摘要: 以钌铱电极做阳极、石墨片做阴极,建立了电化学反应器处理三氯生模拟废水,重点考察了电流密度、pH、电解质硫酸钠浓度对电化学反应器去除水中微量三氯生效能的影响规律。研究发现,随着电流密度增大,三氯生去除率会有所提高,但存在一定限度;总体上酸性或碱性条件下的处理效果优于中性条件,电解质浓度过高或过低都不利于三氯生的去除。计算出不同电解质浓度和电流密度下的能耗,探讨了三氯生的电化学去除机制。电化学反应器对三氯生模拟废水有较好的处理效果,当三氯生初始浓度为4 mg·L-1、电流密度为10 mA·cm-2、电解质Na2SO4浓度为0.025 mg·L-1、中性条件下反应时间2 h,三氯生去除率达70.7%,能耗为26.4 kWh·g-1。
  • 加载中
  • [1] 刘海津,刘国光,李通,等.三氯生的光电催化降解及其产物毒性变化[C]//中国化学会.中国化学会第28届学术年会第2分会场摘要集.成都,2012
    [2] 周雪飞.污水处理系统中三氯生固相萃取(SPE气)-电子俘获检测器(ECD)测定方法的建立和优化[J]. 环境化学,2011,30(2):506-510
    [3] 徐海丽,林毅,孙倩,等.三氯生的生态效应及其在环境中的迁移转化[J]. 生态毒理学报,2012,7(3):225-233
    [4] 李丕,郭项雨,李海玉,等.高效液相色谱法测定洗涤用品中三氯生和三氯卡班[J]. 分析试验室,2014,33(12):1416-1419
    [5] 王丽,邵金良,刘兴勇,等.分散固相萃取-高效液相色谱法测定水果中三氯生及三氯卡班[J]. 食品安全质量检测学报,2015,6(10):4205-4211
    [6] LIU J H, WANG J M , ZHAO C C, et al.Performance and mechanism of triclosan removal in simultaneous nitrification and denitrification (SND) process under low-oxygen condition[J].Applied Microbiology and Biotechnology,2017,101(4):1653-1660 10.1007/s00253-016-7952-3
    [7] TOHIDI F, CAI Z.GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments[J].Environmental Science and Pollution Research,2015,22(15):11387-11400 10.1007/s11356-015-4289-x
    [8] ZHAI P P, CHEN X, DONG W B, et al.Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation[J].Environmental Science and Pollution Research,2017,24(1):558-567 10.1007/s11356-016-7778-7
    [9] DOU R N, ZHANG J Y, CHEN Y C, et al.High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al)[J].Environmental Science and Pollution Research,2017,24(9):8778-8789 10.1007/s11356-017-8583-7
    [10] SHI Y Y, KONG D Y , LIU J Y, et al.Transformation of triclosan by a novel cold-adapted laccase from Botrytis sp.FQ[J].Frontiers of Environmental Science & Engineering,2017,11(3):79-86 10.1007/s11783-017-0927-5
    [11] LEON-CONDES C D, BARRERA-DíAZ C, BARRIOS J, et al.A coupled ozonation-electrooxidation treatment for removal of bisphenol A, nonylphenol and triclosan from wastewater sludge[J].International Journal of Environmental Science and Technology,2017,14(4):707-716 10.1007/s13762-016-1178-x
    [12] MURUGESAN K, CHANG Y Y, KIM Y M, et al.Enhanced transformation of triclosan by laccase in the presence of redox mediators[J].Water Research,2010,44(1):298-308 10.1016/j.watres.2009.09.058
    [13] TOHIDI F, CAI Z.Fate and mass balance of triclosan and its degradation products:Comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion[J].Journal of Hazardous Materials,2017,323:329-340 10.1016/j.jhazmat.2016.04.034
    [14] 叶文彬.碳纳米管电极催化降解典型PPCPs的研究[D]. 北京:北京化工大学,2010
    [15] 郑红涛.钯修饰碳纳米管电极电催化氧化三氯生[J]. 环境工程学报,2012,6(6):1790-1794
    [16] 宋燕,陈捷,张国权,等.掺杂石墨烯气体扩散电极电芬顿氧化降解三氯生废水模拟[J]. 水资源与水工程学报,2014,25(2):49-53 10.11705/j.issn.1672-643X.2014.02.10
    [17] 刘建兰,郭会明,韩明娟,等.物理化学:下[M]. 北京:化学工业出版社,2014:38
    [18] MONTASERI H, FORBES P B C.A review of monitoring methods for triclosan and its occurrence in aquatic environments[J].Trends in Analytical Chemistry,2016,85:221-231 10.1016/j.trac.2016.09.010
    [19] 孟令芝,龚淑玲,何永炳.有机波谱分析[M]. 武汉:武汉大学出版社,2009:338-344
  • 加载中
计量
  • 文章访问数:  3262
  • HTML全文浏览数:  2841
  • PDF下载数:  500
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

低浓度三氯生废水的电化学去除效能

  • 1. 南京工业大学环境科学与工程学院,江苏省工业节水减排重点实验室,南京211816
基金项目:

国家自然科学基金资助项目(51308284)

摘要: 以钌铱电极做阳极、石墨片做阴极,建立了电化学反应器处理三氯生模拟废水,重点考察了电流密度、pH、电解质硫酸钠浓度对电化学反应器去除水中微量三氯生效能的影响规律。研究发现,随着电流密度增大,三氯生去除率会有所提高,但存在一定限度;总体上酸性或碱性条件下的处理效果优于中性条件,电解质浓度过高或过低都不利于三氯生的去除。计算出不同电解质浓度和电流密度下的能耗,探讨了三氯生的电化学去除机制。电化学反应器对三氯生模拟废水有较好的处理效果,当三氯生初始浓度为4 mg·L-1、电流密度为10 mA·cm-2、电解质Na2SO4浓度为0.025 mg·L-1、中性条件下反应时间2 h,三氯生去除率达70.7%,能耗为26.4 kWh·g-1。

English Abstract

参考文献 (19)

目录

/

返回文章
返回