氢氧化铝胶体对2,2′,4,4′-四溴联苯醚的吸附

邱文凯, 马腾, 刘锐, 陈柳竹. 氢氧化铝胶体对2,2′,4,4′-四溴联苯醚的吸附[J]. 环境工程学报, 2018, 12(3): 815-823. doi: 10.12030/j.cjee.201709141
引用本文: 邱文凯, 马腾, 刘锐, 陈柳竹. 氢氧化铝胶体对2,2′,4,4′-四溴联苯醚的吸附[J]. 环境工程学报, 2018, 12(3): 815-823. doi: 10.12030/j.cjee.201709141
QIU Wenkai, MA Teng, LIU Rui, CHEN Liuzhu. Adsorption of BDE-47 on aluminium hydroxide colloid[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 815-823. doi: 10.12030/j.cjee.201709141
Citation: QIU Wenkai, MA Teng, LIU Rui, CHEN Liuzhu. Adsorption of BDE-47 on aluminium hydroxide colloid[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 815-823. doi: 10.12030/j.cjee.201709141

氢氧化铝胶体对2,2′,4,4′-四溴联苯醚的吸附

  • 基金项目:

    国家自然科学基金资助项目(41372252)

Adsorption of BDE-47 on aluminium hydroxide colloid

  • Fund Project:
  • 摘要: 溴代阻燃剂多溴联苯醚(polybrominated diphenyl ethers, PBDEs)是一种被广泛使用的阻燃剂,其对神经、甲状腺、肝脏等具有潜在毒性。其中,2,2′,4,4′-四溴联苯醚(BDE-47)作为一种重要单体,在环境介质中被广泛检出。胶体是环境中污染物迁移过程中的重要载体,它对有机污染物在土壤-地下水系统中的迁移有不可忽略的影响。开展典型无机胶体氢氧化铝胶体对BDE-47的吸附动力学和吸附热力学研究,以期为BDE-47在土壤-地下水中的迁移提供理论依据。结果表明:Sips等温吸附方程对该吸附过程拟合效果最佳(R2adj=0.943 94),计算得出氢氧化铝胶体对BDE-47的饱和吸附量为609.37 mg·g-1;吸附动力学实验结果显示,准二级反应动力学方程拟合氢氧化铝胶体对BDE-47吸附反应过程最佳(R2adj>0.95),同时该吸附反应速率随BDE-47浓度的升高逐渐减小;Van’t Hoff方程拟合表明,吸附热力学参数标准反应焓变△H0 =40.506 kJ·mol-1、标准反应熵变△S0 =0.075 7 kJ·(mol·K)-1,标准反应吉布斯自由能△G0 (298 K)=17.98 kJ·mol-1。此外,反应体系的pH和阳离子种类及浓度均会影响氢氧化铝胶体对BDE-47的吸附过程。
  • 加载中
  • [1] WU Q H, LIU X C, LIANG C Z, et al.Historical trends and ecological risks of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) in a mangrove in South China[J].Science of the Total Environment, 2017, 599:181-187 10.1016/j.scitotenv.2017.05.002
    [2] AKORTIA E, OLUKUNLE O I, DASO A P, et al.Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dump site in the Greater Accra Region, Ghana: Implications for human exposure[J].Ecotoxicology and Environmental Safety, 2017, 137:247-255 10.1016/j.ecoenv.2016.12.008
    [3] ZHANG M M, BUEKENS A, LI X D.Brominated flame retardants and the formation of dioxins and furans in fires and combustion[J].Journal of Hazardous Materials, 2016, 304:26-39 10.1016/j.jhazmat.2015.10.014
    [4] LINARES V, BELLES M, DOMINGO J L.Human exposure to PBDE and critical evaluation of health hazards[J].Archives of Toxicology, 2015, 89(3):335-356 10.1007/s00204-015-1457-1
    [5] ANH H Q, NAM V D, TRI T M, et al.Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: A comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure[J].Environmental Geochemistry and Health, 2017, 39(4):935-954 10.1007/s10653-016-9865-6
    [6] NERGE M, PASSARELLA I, BOURSIER C, et al.Evaluation of the bioavailability of the herbicide prosulfocarb through adsorption on soils and model soil colloids, and through a simple bioassay[J].Pest Management Science, 2006, 62(10):957-964 10.1002/ps.1264
    [7] 杨悦锁,王园园,宋晓明,等.土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报,2017,68(1):23-36 10.11949/j.issn.0438-1157.20161328
    [8] 许利群. 铝硅酸岩化学风化形成铝土矿的理论探讨[C]//中国石油大学(华东).“地球·资源”全国博士生学术论坛会议论文摘要集,2011
    [9] 谢正苗,黄昌勇. 土壤和水体中可溶性铝硅酸盐的形成及环境意义[J]. 环境科学进展,1997,5(1):57-60
    [10] 杜雪莲,孙耀祖.pH值对氢氧化铝晶相及微结构的影响[J]. 郑州大学学报(工学版),2011,32(5):38-41
    [11] MA W F, YAN Y L, MA M S, et al.Migration and biodegradation of BDE-99 in different river-based natural groundwater recharge modes with treated municipal wastewater[J].Process Safety and Environmental Protection, 2016, 103(S1):531-540 10.1016/j.psep.2016.01.014
    [12] MITCHELL P J, SIMPSON A J, SOONG R, et al.Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil[J].Soil Biology & Biochemistry, 2015, 81:244-254 10.1016/j.soilbio.2014.11.017
    [13] WATZINGER A, FEICHTMAIR S, KITZLER B, et al.Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C-13-labelled biochar as revealed by C-13 PLFA analyses: Results from a short-term incubation and pot experiment[J].European Journal of Soil Science, 2014, 65(1):40-51 10.1111/ejss.12100
    [14] BRUUN S, CLAUSON-KAAS S, BOBULSKA L, et al.Carbon dioxide emissions from biochar in soil: Role of clay, microorganisms and carbonates[J].European Journal of Soil Science, 2014, 65(1):52-59 10.1111/ejss.12073
    [15] 贾晓玉, 李海明, 王博, 等. 不同酸碱条件下胶体迁移对含水介质渗透性的影响[J]. 环境科学与技术,2009,32(5): 45-47
    [16] 程程. 土壤胶体的双电层结构及其影响因素[D]. 南京:南京农业大学,2009
    [17] JR R N E.Phenomenological theory of ion solvation.effective radii of hydrated ions[J].Journal of Physical Chemistry, 1959, 63(9):1381-1387 10.1021/j150579a011
  • 加载中
计量
  • 文章访问数:  3416
  • HTML全文浏览数:  2917
  • PDF下载数:  528
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

氢氧化铝胶体对2,2′,4,4′-四溴联苯醚的吸附

  • 1. 中国地质大学(武汉)环境学院,武汉 430074
基金项目:

国家自然科学基金资助项目(41372252)

摘要: 溴代阻燃剂多溴联苯醚(polybrominated diphenyl ethers, PBDEs)是一种被广泛使用的阻燃剂,其对神经、甲状腺、肝脏等具有潜在毒性。其中,2,2′,4,4′-四溴联苯醚(BDE-47)作为一种重要单体,在环境介质中被广泛检出。胶体是环境中污染物迁移过程中的重要载体,它对有机污染物在土壤-地下水系统中的迁移有不可忽略的影响。开展典型无机胶体氢氧化铝胶体对BDE-47的吸附动力学和吸附热力学研究,以期为BDE-47在土壤-地下水中的迁移提供理论依据。结果表明:Sips等温吸附方程对该吸附过程拟合效果最佳(R2adj=0.943 94),计算得出氢氧化铝胶体对BDE-47的饱和吸附量为609.37 mg·g-1;吸附动力学实验结果显示,准二级反应动力学方程拟合氢氧化铝胶体对BDE-47吸附反应过程最佳(R2adj>0.95),同时该吸附反应速率随BDE-47浓度的升高逐渐减小;Van’t Hoff方程拟合表明,吸附热力学参数标准反应焓变△H0 =40.506 kJ·mol-1、标准反应熵变△S0 =0.075 7 kJ·(mol·K)-1,标准反应吉布斯自由能△G0 (298 K)=17.98 kJ·mol-1。此外,反应体系的pH和阳离子种类及浓度均会影响氢氧化铝胶体对BDE-47的吸附过程。

English Abstract

参考文献 (17)

目录

/

返回文章
返回