磷酸盐稳定化修复锌污染土壤小试和工程效果评估

董璟琦, 雷秋霜, 张红振, 司绍诚, 张茜雯, 薛浩天, 张焕祯. 磷酸盐稳定化修复锌污染土壤小试和工程效果评估[J]. 环境工程学报, 2018, 12(3): 923-930. doi: 10.12030/j.cjee.201707222
引用本文: 董璟琦, 雷秋霜, 张红振, 司绍诚, 张茜雯, 薛浩天, 张焕祯. 磷酸盐稳定化修复锌污染土壤小试和工程效果评估[J]. 环境工程学报, 2018, 12(3): 923-930. doi: 10.12030/j.cjee.201707222
DONG Jingqi, LEI Qiushuang, ZHANG Hongzhen, SI Shaocheng, ZHANG Qianwen, XUE Haotian, ZHANG Huanzhen. Effects evaluation of phosphate stabilized zinc contaminated soil in laboratory test and field remediation construction[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 923-930. doi: 10.12030/j.cjee.201707222
Citation: DONG Jingqi, LEI Qiushuang, ZHANG Hongzhen, SI Shaocheng, ZHANG Qianwen, XUE Haotian, ZHANG Huanzhen. Effects evaluation of phosphate stabilized zinc contaminated soil in laboratory test and field remediation construction[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 923-930. doi: 10.12030/j.cjee.201707222

磷酸盐稳定化修复锌污染土壤小试和工程效果评估

  • 基金项目:

    国家自然科学青年基金资助项目 (71403097)

    国家高技术研究发展计划 (863) 项目 (2013AA06A211)

Effects evaluation of phosphate stabilized zinc contaminated soil in laboratory test and field remediation construction

  • Fund Project:
  • 摘要: 采用磷矿粉和某商业药剂为主要稳定化修复材料,针对某典型锌污染场地(包括锌污染土壤和工业废渣)开展实验室小试、稳定化修复工程和长期跟踪稳定化效果评估。结果表明,采用磷矿粉+熟石灰组合对锌污染土壤和建筑废渣具有长期稳定并大幅降低污染介质中锌浸出浓度的效果,实验室小试时投加比为2%时,锌的浸出可完全满足场地修复目标值25 mg·L-1的浓度限值;在现场施工时,为保守起见,设定稳定化药剂投加比例4%,在稳定化过程中,pH变化趋势为逐渐升高到11左右,然后降低稳定至7.0左右,废渣和污染土壤中锌浸出分别为0.2 mg·L-1、0.05 mg·L-1以下;稳定化修复后450 d,再次采样测定锌的浸出和pH,结果分别为低于0.2~2.0 mg·L-1和7.3左右,完全达到预期长期稳定化效果。实验室小试和稳定化工程结果可为后续锌污染场地治理修复提供技术参考和借鉴。
  • 加载中
  • [1] WUANA A R, OKIEIMEN E F, MONTUELLE B, et al.Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation[J].ISRN Ecology, 2011, 2011: 1-20 10.5402/2011/402647
    [2] 中国环境监测总站.中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:330-382
    [3] 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1):117-122
    [4] 曹俊, 向斌, 高焕方, 等. 磷酸盐稳定化处理铅污染土壤及铅的形态分析[J]. 环境工程学报, 2016, 10(10): 6015-6020 10.12030/j.cjee.201505059
    [5] MEYLAN G, RECK B K.The anthropogenic cycle of zinc: Status quo and perspectives[J].Resources, Conservation and Recycling, 2017, 123:1-10 10.1016/j.resconrec.2016.01.006
    [6] WANG F.Time-related performance of soil mix technology stabilized soils from two contaminated sites[D].Cambridge: University of Cambridge, 2015
    [7] KREBS R.In situ immobilization of heavy metals in polluted agricultural soil: An approach to gentle soil remediation[D].Zurich: Swiss Federal Institute of Technology Zurich (ETH), 1996 10.3929/ethz-a-001702387
    [8] LOTHENBACH B.Gentle soil remediation: Immobilization of heavy metals by aluminum and montmorillonite compound[D].Zurich: Swiss Federal Institute of Technology Zurich (ETH), 1996 10.3929/ethz-a-001710156
    [9] BEATRICE K, MARIANNE B, BARBARA L, et al.The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass[J].Journal of Environmental Quality, 1999, 28(6):1699-1705 10.2134/jeq1999.00472425002800060002x
    [10] ROLF K, KUMAR G S, GERHARD F, et al.Gravel sludge as immobilizing additive in soils polluted by heavy metals: A field study[J].Water, Air and Soil Pollution, 1998, 115 (1/2/3/4):465-479 10.1023/A:1005167004828
    [11] BARBARA L, ROLF K, KUMAR G S, et al.Immobilization of cadmium and zinc in soil by Al-montmorillonite and gravel sludge[J].European Journal of Soil Science, 1998, 49:141-148 10.1046/j.1365-2389.1998.00140.x
    [12] ROLF K, GUPTA, KUMAR G S, et al.Solubility and plant uptake of metals with and without liming of sludge-amended soils[J].Journal of Environmental Quality, 1998, 27(1):18-23 10.2134/jeq1998.00472425002700010004x
    [13] KUMAR G S, MARTIN V, ROLF K.The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three level risk assessment and risk management[J].Science of the Total Environment, 1996, 178:11-20 10.1016/0048-9697(95)04792-1
    [14] 董璟琦, 张红振, 吴舜泽, 等. 西部某机械加工企业酸洗场地环境调查与污染特征分析[J]. 环境工程学报, 2016, 10(9):5222-5230 10.12030/j.cjee.201601190
    [15] 国家环境保护总局.固体废物 浸出毒性浸出方法 硫酸硝酸法:HJ/T299-2007[S]. 北京: 中国环境科学出版社, 2007
    [16] LAGREGA M D, BUCKINGHAM P L, EVANS J C, et al.危险废物管理[M]. 2版.李金惠,夏新,刘建国,等译.北京: 清华大学出版社, 2010
    [17] 鲁安怀, 王长秋, 李艳, 等. 矿物学环境属性概论[M]. 北京: 科学出版社, 2015
    [18] 孙晓铧, 黄益宗, 钟敏, 等. 沸石、磷矿粉和石灰对土壤铅锌化学形态和生物可给性的影响[J]. 环境化学, 2013, 32(9):1693-1699 10.7524/j.issn.0254-6108.2013.09.014
    [19] 谢伟强, 李小明, 陈灿, 等. 土壤中铅锌的稳定化处理及机制研究[J]. 环境科学, 2015, 36(12):4609-4614 10.13227/j.hjkx.2015.12.037
    [20] SPOSITO G.The Chemistry of Soils[M]. 2nd Edition.UK: Oxford University Press, 2008
    [21] KABATA-PENDIAS A.Trace Elements in Soils and Plants[M]. 4th Edition.Boca Raton: CRC Press, 2010
    [22] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011,7(5):1441-1453
  • 加载中
计量
  • 文章访问数:  2367
  • HTML全文浏览数:  1956
  • PDF下载数:  549
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

磷酸盐稳定化修复锌污染土壤小试和工程效果评估

  • 1. 中国地质大学北京水资源与环境学院, 北京 100083
  • 2. 环境保护部环境规划院, 北京 100012
  • 3. 青海省环境科学研究设计院, 西宁 810007
基金项目:

国家自然科学青年基金资助项目 (71403097)

国家高技术研究发展计划 (863) 项目 (2013AA06A211)

摘要: 采用磷矿粉和某商业药剂为主要稳定化修复材料,针对某典型锌污染场地(包括锌污染土壤和工业废渣)开展实验室小试、稳定化修复工程和长期跟踪稳定化效果评估。结果表明,采用磷矿粉+熟石灰组合对锌污染土壤和建筑废渣具有长期稳定并大幅降低污染介质中锌浸出浓度的效果,实验室小试时投加比为2%时,锌的浸出可完全满足场地修复目标值25 mg·L-1的浓度限值;在现场施工时,为保守起见,设定稳定化药剂投加比例4%,在稳定化过程中,pH变化趋势为逐渐升高到11左右,然后降低稳定至7.0左右,废渣和污染土壤中锌浸出分别为0.2 mg·L-1、0.05 mg·L-1以下;稳定化修复后450 d,再次采样测定锌的浸出和pH,结果分别为低于0.2~2.0 mg·L-1和7.3左右,完全达到预期长期稳定化效果。实验室小试和稳定化工程结果可为后续锌污染场地治理修复提供技术参考和借鉴。

English Abstract

参考文献 (22)

目录

/

返回文章
返回