城市生活污水短程硝化系统的恢复与启动

蒋杭城, 马艺鸣, 张源凯, 宋新新, 王洪臣. 城市生活污水短程硝化系统的恢复与启动[J]. 环境工程学报, 2017, 11(9): 4952-4957. doi: 10.12030/j.cjee.201612224
引用本文: 蒋杭城, 马艺鸣, 张源凯, 宋新新, 王洪臣. 城市生活污水短程硝化系统的恢复与启动[J]. 环境工程学报, 2017, 11(9): 4952-4957. doi: 10.12030/j.cjee.201612224
JIANG Hangcheng, MA Yiming, ZHANG Yuankai, SONG Xinxin, WANG Hongchen. Biological activity recovery and start-up of mainstream shortcut nitrafication system[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4952-4957. doi: 10.12030/j.cjee.201612224
Citation: JIANG Hangcheng, MA Yiming, ZHANG Yuankai, SONG Xinxin, WANG Hongchen. Biological activity recovery and start-up of mainstream shortcut nitrafication system[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4952-4957. doi: 10.12030/j.cjee.201612224

城市生活污水短程硝化系统的恢复与启动

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2013ZX07314-01)

  • 中图分类号: X703.1

Biological activity recovery and start-up of mainstream shortcut nitrafication system

  • Fund Project:
  • 摘要: 为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO2--N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L-1、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO2--N积累率、NO2--N/NH4+-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH4+-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH4+-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。
  • 加载中
  • [1] TURK O, MAVINIC D S. Maintaining nitrite build-up in a system acclimated to free ammonia[J]. Water Research, 1989, 23(11):1383-1388
    [2] FDZ F. Nitrite accumulation in submerged biofilters:Combined effects[J]. Water Science & Technology, 1996, 34(3/4):371-378
    [3] HELLINGA C, SCHELLEN A A J C, MULDER J W, et al. The SHARON process:An innovative method for nitrogen removal from ammonium-rich wastewater[J]. Water Science & Technology, 1998, 37(9):135-142
    [4] YOO H, AHN K H, LEE H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor[J]. Water Research, 1999, 33(1):145-154
    [5] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6):1371-1377
    [6] THAMDRUP B, DALSGAARD T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied & Environmental Microbiology, 2002, 68(3):1312-1318
    [7] PICIOREANU C, LOOSDRECHT C M V M, HEIJNEN J J. Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Water Science & Technology, 1997, 36(1):147-156
    [8] RATHNAYAKE R M L D, OSHIKI M, ISHⅡ S, et al. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules[J]. Bioresource Technology, 2015, 197:15-22
    [9] LAW Y, LANT P, YUAN Z. The confounding effect of nitrite on N2O production by an enriched ammonia-oxidising culture.[J]. Environmental Science & Technology, 2013, 47(13):7186-7194
    [10] TIAN W D, KYOUNG J A, MA C, et al. Partial nitritation for subsequent Anammox to treat high-ammonium leachate[J]. Environmental Technology, 2013, 34(8):1063-1068
    [11] ISAKA K, KIMURA Y, YAMAMOTO T, et al. Complete autotrophic denitrification in a single reactor using nitritation and anammox gel carriers[J]. Bioresource Technology, 2013, 147(8):96-101
    [12] JIN R C, XING B S, NI W M. Optimization of partial nitritation in a continuous flow internal loop airlift reactor[J]. Bioresource Technology, 2013, 147(11):516-524
    [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002
    [14] 高大文, 彭永臻, 郑庆柱. SBR工艺中短程硝化反硝化的过程控制[J]. 中国给水排水, 2002, 18(11):13-18
    [15] 周丹丹, 马放, 董双石,等. 溶解氧和有机碳源对同步硝化反硝化的影响[J]. 环境工程学报, 2007, 1(4):25-28
    [16] REGMI P, MILLER M W, HOLGATE B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J]. Water Research, 2014, 57(5):162-171
    [17] 张立成, 党维, 徐浩,等. SBR快速实现短程硝化及影响因素[J]. 环境工程学报, 2015, 9(5):2272-2276
    [18] TANG X, YANG Q, LI J, et al. Semi-nitritation process producing optimum influent for anammox process in treatment of domestic wastewater[J]. Chemosphere, 2016, 152:55-61
  • 加载中
计量
  • 文章访问数:  2316
  • HTML全文浏览数:  1812
  • PDF下载数:  527
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-03
  • 刊出日期:  2017-08-26

城市生活污水短程硝化系统的恢复与启动

  • 1. 中国人民大学环境学院, 北京 100872
基金项目:

国家水体污染控制与治理科技重大专项(2013ZX07314-01)

摘要: 为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO2--N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L-1、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO2--N积累率、NO2--N/NH4+-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH4+-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH4+-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。

English Abstract

参考文献 (18)

目录

/

返回文章
返回