BiVO4联合H2O2或K2S2O8光催化降解布洛芬

李富华, 孔青青, 康亚璞, 林晓璇, 王枫亮, 陈平, 刘国光, 吕文英, 姚琨. BiVO4联合H2O2或K2S2O8光催化降解布洛芬[J]. 环境工程学报, 2016, 10(10): 5380-5386. doi: 10.12030/j.cjee.201603033
引用本文: 李富华, 孔青青, 康亚璞, 林晓璇, 王枫亮, 陈平, 刘国光, 吕文英, 姚琨. BiVO4联合H2O2或K2S2O8光催化降解布洛芬[J]. 环境工程学报, 2016, 10(10): 5380-5386. doi: 10.12030/j.cjee.201603033
LI Fuhua, KONG Qingqing, KANG Yapu, LIN Xiaoxuan, WANG Fengliang, CHEN Ping, LIU Guoguang, LYU Wenying, YAO Kun. Photocatalytic degradation of ibuprofen via BiVO4 combined with H2O2 or K2S2O8[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5380-5386. doi: 10.12030/j.cjee.201603033
Citation: LI Fuhua, KONG Qingqing, KANG Yapu, LIN Xiaoxuan, WANG Fengliang, CHEN Ping, LIU Guoguang, LYU Wenying, YAO Kun. Photocatalytic degradation of ibuprofen via BiVO4 combined with H2O2 or K2S2O8[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5380-5386. doi: 10.12030/j.cjee.201603033

BiVO4联合H2O2或K2S2O8光催化降解布洛芬

  • 基金项目:

    国家自然科学基金资助项目(21377031)

Photocatalytic degradation of ibuprofen via BiVO4 combined with H2O2 or K2S2O8

  • Fund Project:
  • 摘要: 以水热法制备了BiVO4光催化剂,并用X射线衍射和扫描电镜对其进行表征。在模拟太阳光照射下,以布洛芬为目标污染物,考察了BiVO4联合H2O2或K2S2O8工艺对布洛芬的光催化降解效果,得出了H2O2或K2S2O8的最佳投加量。通过淬灭实验,研究了光催化联合体系降解布洛芬的机制。X射线衍射谱图表明所合成的BiVO4光催化剂为纯的单斜晶相,扫描电镜结果表明制备的粉末形貌单一,且呈现微球状。加入H2O2或K2S2O8后,一定程度上促进了BiVO4光催化降解布洛芬的效率,H2O2和K2S2O8的最佳投加量分别为3.0 mmol·L-1和1.5 g·L-1。BiVO4/H2O2/hν体系和BiVO4/K2S2O8/hν体系降解水中布洛芬主要是基于·OH自由基的氧化作用。通过对比2个体系中·OH和O2·-对布洛芬降解速率的贡献,发现K2S2O8对BiVO4光催化体系的促进作用远远大于H2O2对该体系的促进作用。
  • 加载中
  • [1] BUSER H.R.,POIGER T.,MÜLLER M.D.Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater.Environmental Science & Technology,1999,33(15):2529-2535
    [2] WEIGEL S.,BERGER U.,JENSEN E.,et al.Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsφ/Norway with emphasis on ibuprofen and its metabolites.Chemosphere,2004,56(6):583-592
    [3] SCHEYTT T.J.,MERSMANN P.,HEBERER T.Mobility of pharmaceuticals carbamazepine,diclofenac,ibuprofen,and propyphenazone in miscible-displacement experiments.Journal of Contaminant Hydrology,2006,83(1/2):53-69
    [4] TERNES T.A.,BONERZ M.,HERRMANN N.,et al.Irrigation of treated wastewater in Braunschweig,Germany:An option to remove pharmaceuticals and musk fragrances.Chemosphere,2007,66(5):894-904
    [5] SANTOS J.L.,APARICIO I.,ALONSO E.Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants.A case study:Seville city (Spain).Environment International,2007,33(4):596-601
    [6] CARBALLA M.,OMIL F.,LEMA J.M.,et al.Behavior of pharmaceuticals,cosmetics and hormones in a sewage treatment plant.Water Research,2004,38(12):2918-2926
    [7] GOLET E.M.,STREHLER A.,ALDER A.C.,et al.Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction.Analytical Chemistry,2002,74(21):5455-5462
    [8] KIMURA K.,HARA H.,WATANABE Y.Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors.Environmental Science & Technology,2007,41(10):3708-3714
    [9] VIENO N.M.,TUHKANEN T.,KRONBERG L.Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water.Environmental Science & Technology,2005,39(21):8220-8226.
    [10] KOCAMEMI B.A.,ÇEÇEN F.Cometabolic degradation of TCE in enriched nitrifying batch systems.Journal of Hazardous Materials,2005,125(1/2/3):260-265
    [11] TRAN N.H.,URASE T.,KUSAKABE O.The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds.Journal of Hazardous Materials,2009,171(1/2/3):1051-1057
    [12] MÉNDEZ-ARRIAGA F.,ESPLUGAS S.,GIMÉNEZ J.Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation.Water Research,2008,42(3):585-594
    [13] MÉNDEZ-ARRIAGA F.,GIMENEZ J.,ESPLUGAS S.Photolysis and TiO2 photocatalytic treatment of naproxen:Degradation,mineralization,intermediates and toxicity.Journal of Advanced Oxidation Technologies,2008,11(3):435-444
    [14] ACHILLEOS A.,HAPESHI E.,XEKOUKOULOTAKIS N.P.,et al.Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis.Chemical Engineering Journal,2010,161(1/2):53-59
    [15] NOH T.H.,KIM D.W.,SEO S.W.,et al.Facile hydrothermal synthesis of InVO4 microspheres and their visible-light photocatalytic activities.Materials Letters,2012,72:98-100
    [16] ZHANG Chuan,ZHU Yongfa.Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts.Chemistry of Materials,2005,17(13):3537-3545
    [17] LONG Mingce,CAI Weimin,KISCH H.Photoelectrochemical properties of nanocrystalline Aurivillius phase Bi2MoO6 film under visible light irradiation.Chemical Physics Letters,2008,461(1/2/3):102-105
    [18] KOHTANI S.,TOMOHIRO M.,TOKUMURA K.,et al.Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts.Applied Catalysis B:Environmental,2005,58(3/4):265-272
    [19] ZHANG Xi,AI Zhihui,JIA Falong,et al.Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases.Materials Chemistry and Physics,2007,103(1):162-167
    [20] ZHOU Lin,WANG Wenzhong,LIU Shengwei,et al.A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst.Journal of Molecular Catalysis A:Chemical,2006,252(1/2):120-124
    [21] YU Jianqiang,ZHANG Yan,KUDO A.Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process.Journal of Solid State Chemistry,2009,182(2):223-228
    [22] SOBANA N.,SWAMINATHAN M.The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO.Separation and Purification Technology,2007,56(1):101-107
    [23] YU Jianqiang,KUDO A.Hydrothermal synthesis of nanofibrous bismuth vanadate.Chemistry Letters,2005,34(6):850-851
    [24] ZHOU Lin,WANG Wenzhong,LIU Shengwei,et al.A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst.Journal of Molecular Catalysis A:Chemical,2006,252(1/2):120-124
    [25] ELMOLLA E.S.,CHAUDHURI M.Photocatalytic degradation of amoxicillin,ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis.Desalination,2010,252(1/2/3):46-52
    [26] ZHU Zhenfeng,ZHANG Lian,LI Junqi,et al.Synthesis and photocatalytic behavior of BiVO4 with decahedral structure.Ceramics International,2013,39(7):7461-7465
    [27] CHEN T.F.,DOONG R.A.,LEI Wengang.Photocatalytic degradation of parathion in aqueous TiO2 dispersion:The effect of hydrogen peroxide and light intensity.Water Science and Technology,1998,37(8):187-194
    [28] DURÁN A.,MONTEAGUDO J.M.,MOHEDANO M.Neural networks simulation of photo-Fenton degradation of Reactive Blue 4.Applied Catalysis B:Environmental,2006,65(1/2):127-134
    [29] DHANANJEYAN M.R.,FINE E.,KIWI J.Synthetic polymer delivery system.:Sustained release of persulfate during the photo-oxidation of an azo-dye.Journal of Photochemistry and Photobiology A:Chemistry,2000,136(1/2):125-131
    [30] MALATO S.,BLANCO J.,RICHTER C.,et al.Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species.Applied Catalysis B:Environmental,1998,17(4):347-356
    [31] MURUGANANDHAM M.,SWAMINATHAN M.Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension.Solar Energy Materials and Solar Cells,2004,81(4):439-457
    [32] LEE Y.C.,LO S.L.,CHIUEH P.T.,et al.Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate.Water Research,2009,43(11):2811-2816
    [33] XU Xiangrong,LI Xiangzhong.Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion.Separation and Purification Technology,2010,72(1):105-111
    [34] ZHANG Nan,LIU Guoguang,LIU Haijin,et al.Diclofenac photodegradation under simulated sunlight:Effect of different forms of nitrogen and Kinetics.Journal of Hazardous Materials,2011,192(1):411-418
  • 加载中
计量
  • 文章访问数:  2463
  • HTML全文浏览数:  2043
  • PDF下载数:  466
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-25
  • 刊出日期:  2016-10-20

BiVO4联合H2O2或K2S2O8光催化降解布洛芬

  • 1. 广东工业大学环境科学与工程学院, 广州 510006
基金项目:

国家自然科学基金资助项目(21377031)

摘要: 以水热法制备了BiVO4光催化剂,并用X射线衍射和扫描电镜对其进行表征。在模拟太阳光照射下,以布洛芬为目标污染物,考察了BiVO4联合H2O2或K2S2O8工艺对布洛芬的光催化降解效果,得出了H2O2或K2S2O8的最佳投加量。通过淬灭实验,研究了光催化联合体系降解布洛芬的机制。X射线衍射谱图表明所合成的BiVO4光催化剂为纯的单斜晶相,扫描电镜结果表明制备的粉末形貌单一,且呈现微球状。加入H2O2或K2S2O8后,一定程度上促进了BiVO4光催化降解布洛芬的效率,H2O2和K2S2O8的最佳投加量分别为3.0 mmol·L-1和1.5 g·L-1。BiVO4/H2O2/hν体系和BiVO4/K2S2O8/hν体系降解水中布洛芬主要是基于·OH自由基的氧化作用。通过对比2个体系中·OH和O2·-对布洛芬降解速率的贡献,发现K2S2O8对BiVO4光催化体系的促进作用远远大于H2O2对该体系的促进作用。

English Abstract

参考文献 (34)

目录

/

返回文章
返回