生物吸附-膜反应器富集生活污水中碳源物质的特性

宋哲华, 杨宁宁, 文湘华, 赵凤娟. 生物吸附-膜反应器富集生活污水中碳源物质的特性[J]. 环境工程学报, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
引用本文: 宋哲华, 杨宁宁, 文湘华, 赵凤娟. 生物吸附-膜反应器富集生活污水中碳源物质的特性[J]. 环境工程学报, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
SONG Zhehua, YANG Ningning, WEN Xianghua, ZHAO Fengjuan. Separation and concentration of carbon source in municipal wastewaters by adsorption-membrane separation system[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
Citation: SONG Zhehua, YANG Ningning, WEN Xianghua, ZHAO Fengjuan. Separation and concentration of carbon source in municipal wastewaters by adsorption-membrane separation system[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007

生物吸附-膜反应器富集生活污水中碳源物质的特性

  • 基金项目:

    国际科技合作与交流专项(2011DFA90400)

  • 中图分类号: X703.1

Separation and concentration of carbon source in municipal wastewaters by adsorption-membrane separation system

  • Fund Project:
  • 摘要: 设计并构建了生物吸附-微滤膜反应器,利用活性污泥的吸附作用及微滤膜的高效分离作用,处理来自不同生活污水处理厂的进水,分析典型城市污水中碳源物质的形态分布,以及生物吸附-微滤膜反应器对生活污水中含碳物质的富集分离效果。结果表明,生物吸附-微滤膜反应器对胶体COD的去除率较高,为60%~76%,对溶解态COD的去除率较低,为29%~38%;不同HRT对反应器的运行效果影响不大,综合考虑COD富集率及系统运行的经济性,本研究推荐的运行参数为SRT=2 d,HRT=22 min,藉此,生物吸附-膜反应器对碳源物质的富集回收率可达到50.0%左右。
  • [1] 王凯军,宫徽,金正宇.未来污水处理技术发展方向的思考与探索.建设科技,2013(2):36-38WANG Kaijun,GONG Hui,JIN Zhengyu.The thinking and exploration of future sewage treatment technology development.Construction Science and Technology,2013(2):36-38(in Chinese)
    [2] VERSTRAETE W.,VAN DE CAVEYE P.,DIAMANTIS V.Maximum use of resources present in domestic "used water".Bioresource Technology,2009,100(23):5537-5545
    [3] MCCARTY P.L.,BAE J.,KIM J.Domestic wastewater treatment as a net energy producer-can this be achieved?.Environmental Science & Technology,2011,45(17):7100-7106
    [4] 王忺,金正宇,宫徽,等.强化混凝-吸附预处理生活污水.环境工程学报,2015,9(3):1015-1020WANG Xian,JIN Zhengyu,GONG Hui,et al.Pretreatment of sewage by hybrid coagulation-adsorption process.Chinese Journal of Environmental Engineering,2015,9(3):1015-1020(in Chinese)
    [5] VAN HAANDEL A.C.,LETTINGA G.Anaerobic Sewage Treatment:A Practical Guide for Regions with A Hot Climate.England:Chichester,1994
    [6] LIU Hongbo,ZHAO fang,MAO Boyang,et al.Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.Bioresource Technology,2012,114(3):62-68
    [7] RAMONA G.,GREEN M.,SEMIAT R.,et al.Low strength graywater characterization and treatmentby direct membrane filtration.Desalination,2004,170(3):241-250
    [8] SCHNOOR J.L.NEWater future?Environmental Science & Technology,2009,43(17):6441-6442
    [9] VAN NIEUWENHUIJZEN A.F.,VAN DER GRAAF J.H.J.M.,MELS A.R.Direct influent filtration as a pretreatment step for more sustainable wastewater treatment systems.Water Science & Technology:A Journal of the International Association on Water Pollution Research,2001,43(11):91-98
    [10] 宫徽.以资源化为目标的新型生活污水处理工艺预处理研究.北京:清华大学硕士学位论文,2012 GONG Hui.Research on pretreatment of novel sewage treatment for multi-resource reuse.Beijing:Master Dissertation of Tsinghua University,2012(in Chinese)
    [11] 王忺.混凝吸附强化分离浓缩生活污水.合肥:合肥工业大学硕士学位论文,2014 WANG Xian.Direct sewage concentration by hybrid coagulation-adsorption-based system.Hefei:Master Dissertation of Hefei University of Technology,2014(in Chinese)
    [12] 金正宇.强化膜混凝反应器(E-MCR) 生活污水资源化处理工艺研究.北京:清华大学博士学位论文,2015 JIN Zhengyu.Enhanced membrane coagulation reactor (E-MCR) for maximizing sewage resource recovery.Beijing:Doctor Dissertation of Tsinghua University,2015(in Chinese)
    [13] SOPHONSIRI C.,MORGENROTH E.Chemical composition associated with different particle size fractions in municipal,industrial,and agricultural wastewaters.Chemosphere,2004,55(5):691-703
    [14] GUELLIL A.,BOUALAM M.,QUIQUAMPOIX H.,et al.Hydrolysis of wastewater colloidal organic matter by extracellular enzymes extracted from activated sludge flocs.Water Science & Technology,2001,43(6):33-40
    [15] 施汉昌,邱勇.污水生物处理的数学模型与应用.北京:中国建筑工业出版社,2014:17-21
  • 期刊类型引用(4)

    1. 曾尚景,焦阳,孙雪健,王帆,艾胜书,边德军. 超声破解联合湿法检测活性污泥中COD_(Cr)的研究. 声学技术. 2024(02): 241-248 . 百度学术
    2. 王文超,贺聪慧,房阔,徐恒,高放,孙凯,王凯军. 基于化学强化HLMBR的城市污水处理中试性能研究. 给水排水. 2022(09): 37-43+50 . 百度学术
    3. 王浩,刘国梁,常江,张树军,王佳伟,蒋勇,邱浩然,杨炼. 化学絮凝-过滤技术对碳源物质富集效果的研究. 给水排水. 2020(S1): 476-480 . 百度学术
    4. 邓丽君,张军,左薇,詹巍. 基于能源回收的污水有机物富集技术研究进展. 环境科学与技术. 2018(S2): 241-246 . 百度学术

    其他类型引用(4)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-030Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.6 %DOWNLOAD: 2.6 %FULLTEXT: 93.0 %FULLTEXT: 93.0 %META: 4.4 %META: 4.4 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.8 %其他: 81.8 %Ashburn: 2.9 %Ashburn: 2.9 %Beijing: 3.5 %Beijing: 3.5 %Brooklyn: 0.2 %Brooklyn: 0.2 %Changsha: 0.2 %Changsha: 0.2 %Hangzhou: 0.4 %Hangzhou: 0.4 %Kunshan: 0.4 %Kunshan: 0.4 %Mountain View: 0.2 %Mountain View: 0.2 %Newark: 1.1 %Newark: 1.1 %Shanghai: 0.7 %Shanghai: 0.7 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Taiyuan: 0.9 %Taiyuan: 0.9 %Wanchai: 0.2 %Wanchai: 0.2 %Xingfeng: 0.4 %Xingfeng: 0.4 %XX: 2.4 %XX: 2.4 %Yanqing Qu: 0.4 %Yanqing Qu: 0.4 %Yuncheng: 0.2 %Yuncheng: 0.2 %北京: 0.7 %北京: 0.7 %北海: 0.2 %北海: 0.2 %宿迁: 0.2 %宿迁: 0.2 %廊坊: 0.2 %廊坊: 0.2 %深圳: 1.1 %深圳: 1.1 %纳什维尔: 0.2 %纳什维尔: 0.2 %贵港: 0.4 %贵港: 0.4 %郑州: 0.7 %郑州: 0.7 %其他AshburnBeijingBrooklynChangshaHangzhouKunshanMountain ViewNewarkShanghaiShijiazhuangTaiyuanWanchaiXingfengXXYanqing QuYuncheng北京北海宿迁廊坊深圳纳什维尔贵港郑州Highcharts.com
计量
  • 文章访问数:  2378
  • HTML全文浏览数:  1926
  • PDF下载数:  771
  • 施引文献:  8
出版历程
  • 收稿日期:  2016-03-15
  • 刊出日期:  2016-10-20
宋哲华, 杨宁宁, 文湘华, 赵凤娟. 生物吸附-膜反应器富集生活污水中碳源物质的特性[J]. 环境工程学报, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
引用本文: 宋哲华, 杨宁宁, 文湘华, 赵凤娟. 生物吸附-膜反应器富集生活污水中碳源物质的特性[J]. 环境工程学报, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
SONG Zhehua, YANG Ningning, WEN Xianghua, ZHAO Fengjuan. Separation and concentration of carbon source in municipal wastewaters by adsorption-membrane separation system[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007
Citation: SONG Zhehua, YANG Ningning, WEN Xianghua, ZHAO Fengjuan. Separation and concentration of carbon source in municipal wastewaters by adsorption-membrane separation system[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5400-5406. doi: 10.12030/j.cjee.201602007

生物吸附-膜反应器富集生活污水中碳源物质的特性

  • 1. 清华大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
  • 2. 北京景山学校, 北京 100006
  • 3. 滨州学院生命科学系, 山东滨州 25600
基金项目:

国际科技合作与交流专项(2011DFA90400)

摘要: 设计并构建了生物吸附-微滤膜反应器,利用活性污泥的吸附作用及微滤膜的高效分离作用,处理来自不同生活污水处理厂的进水,分析典型城市污水中碳源物质的形态分布,以及生物吸附-微滤膜反应器对生活污水中含碳物质的富集分离效果。结果表明,生物吸附-微滤膜反应器对胶体COD的去除率较高,为60%~76%,对溶解态COD的去除率较低,为29%~38%;不同HRT对反应器的运行效果影响不大,综合考虑COD富集率及系统运行的经济性,本研究推荐的运行参数为SRT=2 d,HRT=22 min,藉此,生物吸附-膜反应器对碳源物质的富集回收率可达到50.0%左右。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回