铝易拉罐/Fe (Ⅱ)/O2体系降解对氨基苯胂酸的机理

刘玉坤, 郑星, 陈勐, 郑经堂. 铝易拉罐/Fe (Ⅱ)/O2体系降解对氨基苯胂酸的机理[J]. 环境工程学报, 2017, 11(3): 1417-1422. doi: 10.12030/j.cjee.201512053
引用本文: 刘玉坤, 郑星, 陈勐, 郑经堂. 铝易拉罐/Fe (Ⅱ)/O2体系降解对氨基苯胂酸的机理[J]. 环境工程学报, 2017, 11(3): 1417-1422. doi: 10.12030/j.cjee.201512053
LIU Yukun, ZHENG Xing, CHEN Meng, ZHENG Jingtang. Mechanism of degradation of p-arsanilic acid in aluminum beverage cans (AlBCs)/Fe(Ⅱ)/O2 system[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1417-1422. doi: 10.12030/j.cjee.201512053
Citation: LIU Yukun, ZHENG Xing, CHEN Meng, ZHENG Jingtang. Mechanism of degradation of p-arsanilic acid in aluminum beverage cans (AlBCs)/Fe(Ⅱ)/O2 system[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1417-1422. doi: 10.12030/j.cjee.201512053

铝易拉罐/Fe (Ⅱ)/O2体系降解对氨基苯胂酸的机理

  • 基金项目:

    国家自然科学基金资助项目(21376268)

    泰山学者资助计划(ts20130929)

    中央高校基本科研基金资助项目(15CX08005A)

  • 中图分类号: X523

Mechanism of degradation of p-arsanilic acid in aluminum beverage cans (AlBCs)/Fe(Ⅱ)/O2 system

  • Fund Project:
  • 摘要: 对氨基苯胂酸是一种常见的有机胂化合物,常作为饲料添加剂用于畜牧业。研究了在酸性条件下(pH2体系降解水中的对氨基苯胂酸的机理。通过对各种实验参数如pH值、Fe(Ⅱ)的浓度、羟基自由基清除剂和气体氛围等条件的考察,发现:在酸性条件下,零价铝发生电子转移,体系中的溶解氧和水得电子生成过氧化氢,在外加Fe(Ⅱ)的条件下,促进了芬顿反应的发生,产生强氧化性的物质(·OH),实现对对氨基苯胂酸的氧化降解。
  • 加载中
  • [1] DUTTA P K,PEHKONEN S O,SHARMA V K,et al. Photocatalytic oxidation of arsenic(Ⅲ):Evidence of hydroxyl radicals[J]. Environmental Science & Technology,2005,39(6):1827-1834
    [2] 李优平,王玉霞,段晋明,等. 硫酸钛混凝去除无机砷(Ⅲ)的效能[J]. 环境工程学报,2015,9(6):2875-2879
    [3] ADAK A,MANGALGIRI K P,LEE J,et al. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals[J]. Water Research,2015,70:74-85
    [4] JIANG Bo,GUO Jianbo,WANG Zhaohui,et al. A green approach towards simultaneous remediations of chromium(Ⅵ)and arsenic(Ⅲ) in aqueous solution[J]. Chemical Engineering Journal,2014,262:1144-1151
    [5] NACHMAN K E,RABER G,FRANCESCONI K A,et al. Arsenic species in poultry feather meal[J]. Science of the Total Environment,2012,417-418:183-188
    [6] WANG Fumin,CHEN Zhangliu,ZHANG Lu,et al. Arsenic uptake and accumulation in rice (Oryza sativa L.)at different growth stages following soil incorporation of roxarsone and arsanilic acid[J]. Plant and Soil,2006,285(1/2):359-367
    [7] ZHU Xiangdong,WANG Yujun,LIU Cun,et al. Kinetics,intermediates and acute toxicity of arsanilic acid photolysis[J]. Chemosphere,2014,107:274-281
    [8] CZAPLICKA M,BRATEK L,JAWOREK K,et al. Photo-oxidation of p-arsanilic acid in acidic solutions:Kinetics and the identification of by-products and reaction pathways[J]. Chemical Engineering Journal,2014,243:364-371
    [9] GARBARINO J R,BEDNAR A J,RUTHERFORD D W,et al. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting[J]. Environmental Science & Technology,2003,37(8):1509-1514
    [10] DATTA R,SARKAR D,SHARMA S,et al. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils:An incubation study[J]. Science of the Total Environment,2006,372(1):39-48
    [11] ZHENG Shan,JIANG Wenjun,CAI Yong,et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today,2014,224:83-88
    [12] HU Ping,LIU Yukun,JIANG Bo,et al. High-efficiency simultaneous oxidation of organoarsenic and immobilization of arsenic in Fenton enhanced plasma system[J]. Industrial & Engineering Chemistry Research,2015,54(33):8277-8286
    [13] WU C C,HUS L C,CHIANG P N,et al. Oxidative removal of arsenite by Fe(Ⅱ)-and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl)under oxic conditions[J]. Water Research,2013,47(7):2583-2591
    [14] LEE J,KIM J,CHOI W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle[J]. Environmental Science & Technology,2007,41(9):3335-3340
    [15] BOKARE A D,CHOI W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants[J]. Environmental Science & Technology,2009,43(18):7130-7135
    [16] 廖玉海. 无机阴离子P4O136-和SO42-对零价铁降解污染物活性的影响[D]. 武汉:华中师范大学,2014
    [17] 曹贝佩. 零价铝/氧界面活性氧的原位生成及其对水中对乙酰氨基酚的去除作用[D]. 杭州:浙江工业大学,2012
    [18] MARTIN R B. The chemistry of aluminum as related to biology and medicine[J]. Clinical Chemistry,1986,32(10):1797-1806
    [19] VANCE G F,STEVENSON F J,SIKRA F J. Environmental chemistry of aluminum-organic complexes[M]//SPOSITO G. The Environmental Chemistry of Aluminum. 2nd ed. New York:CRC Lewis Publishers,1995
    [20] CHEN Wanru,HUANG C H. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides[J]. Journal of Hazardous Materials,2012,227-228:378-385
  • 加载中
计量
  • 文章访问数:  2130
  • HTML全文浏览数:  1688
  • PDF下载数:  411
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-12
  • 刊出日期:  2017-03-10

铝易拉罐/Fe (Ⅱ)/O2体系降解对氨基苯胂酸的机理

  • 1. 中国石油大学(华东)重质油国家重点实验室, 青岛 266580
  • 2. 北京中环鼎盛环保科技有限责任公司, 北京 100080
基金项目:

国家自然科学基金资助项目(21376268)

泰山学者资助计划(ts20130929)

中央高校基本科研基金资助项目(15CX08005A)

摘要: 对氨基苯胂酸是一种常见的有机胂化合物,常作为饲料添加剂用于畜牧业。研究了在酸性条件下(pH2体系降解水中的对氨基苯胂酸的机理。通过对各种实验参数如pH值、Fe(Ⅱ)的浓度、羟基自由基清除剂和气体氛围等条件的考察,发现:在酸性条件下,零价铝发生电子转移,体系中的溶解氧和水得电子生成过氧化氢,在外加Fe(Ⅱ)的条件下,促进了芬顿反应的发生,产生强氧化性的物质(·OH),实现对对氨基苯胂酸的氧化降解。

English Abstract

参考文献 (20)

目录

/

返回文章
返回