微生物燃料电池降解邻苯二甲酸酯及同步产电特性

华萌, 王磊, 李陈, 王旭东, 颜明姣. 微生物燃料电池降解邻苯二甲酸酯及同步产电特性[J]. 环境工程学报, 2017, 11(3): 1423-1430. doi: 10.12030/j.cjee.201511197
引用本文: 华萌, 王磊, 李陈, 王旭东, 颜明姣. 微生物燃料电池降解邻苯二甲酸酯及同步产电特性[J]. 环境工程学报, 2017, 11(3): 1423-1430. doi: 10.12030/j.cjee.201511197
HUA Meng, WANG Lei, LI Chen, WANG Xudong, YAN Mingjiao. Phthalic acid esters degradation and electricity generation using microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1423-1430. doi: 10.12030/j.cjee.201511197
Citation: HUA Meng, WANG Lei, LI Chen, WANG Xudong, YAN Mingjiao. Phthalic acid esters degradation and electricity generation using microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1423-1430. doi: 10.12030/j.cjee.201511197

微生物燃料电池降解邻苯二甲酸酯及同步产电特性

  • 基金项目:

    国家自然科学基金资助项目(51278408)

    陕西省科技统筹创新工程计划项目(2013KTCL03-16)

  • 中图分类号: X703.1

Phthalic acid esters degradation and electricity generation using microbial fuel cell

  • Fund Project:
  • 摘要: 构建双室微生物燃料电池(MFC)装置,研究了分别以乙酸钠(NaAc)作单一燃料和乙酸钠+邻苯二甲酸酯(PAEs)作混合燃料条件下,MFC的产电性能及其对邻苯二甲酸酯的去除效果。结果显示,微生物燃料电池对邻苯二甲酸酯类废水的化学需氧量(COD)的总去除率可达89%~94%,对邻苯二甲酸酯的去除率均在70%以上。以2 g·L-1 NaAc+10 mg·L-1 PAEs作混合燃料时,MFC获得最大(面积)功率密度58.78 mW·m-2,电池内阻213.50 Ω。实验结果表明,MFC能够利用高浓度邻苯二甲酸酯作燃料,在实现高效降解的同时稳定地向外输出电能,这为环境激素类难降解有机物的高效低耗处理提供了一种新的研究思路。
  • 加载中
  • [1] AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10):3388-3394
    [2] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192
    [3] RABAEY K, VERSTRAETE W. Microbial fuel cells:Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6):291-298
    [4] ZHOU Minghua, CHI Meiling, LUO Jianmei, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10):4427-4435
    [5] 梁吉虎, 高自良, 于建生. 关于微生物燃料电池底物的研究进展[J]. 氨基酸和生物资源, 2010, 34(3):20-25
    [6] LOGAN B E, REGAN J M. Microbial fuel cells:Challenges and applications[J]. Environmental Science & Technology, 2006, 40(17):5172-5180
    [7] SUN Min, SHENG Guoping, MU Zhexuan, et al. Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system[J]. Journal of Power Sources, 2009, 191(2):338-343
    [8] CATAL T, LI Kaichang, BERMEK H, et al. Electricity production from twelve monosaccharides using microbial fuel cells[J]. Journal of Power Sources, 2008, 175(1):196-200
    [9] REN Zhiyong, WARD T E, REGAN J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environmental Science & Technology, 2007, 41(13):4781-4786
    [10] 骆海萍, 刘广立, 张仁铎, 等. 以苯酚为燃料的微生物燃料电池产电特性[J]. 环境科学学报, 2008, 28(7):1279-1283
    [11] SUN Jian, HU Yongyou, BI Zhe, et al. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell[J]. Bioresource Technology, 2009, 100(13):3185-3192
    [12] LU Na, ZHOU Shungui, ZHUANG Li, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology[J]. Biochemical Engineering Journal, 2009, 43(3):246-251
    [13] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology, 2009, 100(2):717-723
    [14] MOHAN S V, SARAVANAN R, VEER RAGHAVULU S, et al. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC)using selectively enriched mixed microflora:Effect of catholyte[J]. Bioresource Technology, 2008, 99(3):596-603
    [15] STAPLES C A, PETERSON D R, PARKERTON T F, et al. The environmental fate of phthalate esters:A literature review[J]. Chemosphere, 1997, 35(4):667-749
    [16] 庞金梅, 池宝亮, 段亚利. 苯二甲酸酯的微生物降解与转化[J]. 环境科学, 1994, 15(3):88-90
    [17] BAUER M J, HERRMANN R. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes[J]. Science of the Total Environment, 1997, 208(1/2):49-57
    [18] GU Jidong, LI J, WANG Y Y. Biochemical pathway and degradation of phthalate ester isomers by bacteria[J]. Water Science and Technology, 2005, 52(8):241-248
    [19] FATOKI O S, OGUNFOWOKAN A O. Determination of phthalate ester plasticizers in the aquatic environment of southwestern Nigeria[J]. Environment International, 1993, 19(6):619-623
    [20] WANG Yingying, FAN Yanzhen, GU Jidong. Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia[J]. International Biodeterioration & Biodegradation, 2004, 53(2):93-101
    [21] PETERSEN J H, BREINDAHL T. Plasticizers in total diet samples, baby food and infant formulae[J]. Food Additives & Contaminants, 2000, 17(2):133-141
    [22] 叶常明. 环境中的邻苯二甲酸酯[J]. 环境科学进展, 1993, 1(2):36-47
    [23] WANG Jianlong, LIU Ping, QIAN Yi. Microbial degradation of di-n-butyl phthalate[J]. Chemosphere, 1995, 31(9):4051-4056
    [24] CHANG B V, YANG C M, CHENG C H, et al. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004, 55(4):533-538
    [25] ALATRISTE-MONDRAGON F, IRANPOUR R, AHRING B K. Toxicity of di-(2-ethylhexyl)phthalate on the anaerobic digestion of wastewater sludge[J]. Water Research, 2003, 37(6):1260-1269
    [26] GAVALA H N, ALATRISTE-MONDRAGON F, IRANPOUR R, et al. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge[J]. Chemosphere, 2003, 52(4):673-682
    [27] 谢珊, 欧阳科, 黎丽华. 膜在微生物燃料电池分隔材料中应用的研究进展[J]. 水处理技术, 2011, 37(8):15-18
    [28] 李登兰, 洪义国, 许玫英, 等. 微生物燃料电池构造研究进展[J]. 应用与环境生物学报, 2008, 14(1):147-152
    [29] 孔晓英, 孙永明, 李连华, 等. 阳极材料对微生物燃料电池性能影响的研究[J]. 太阳能学报, 2011, 32(5):746-749
    [30] WANG Zhiwei, MA Jinxing, XU Yinlun, et al. Power production from different types of sewage sludge using microbial fuel cells:A comparative study with energetic and microbiological perspectives[J]. Journal of Power Sources, 2013, 235:280-288
    [31] PADAKI M, ISLOOR A M, ISMAIL A F, et al. Synthesis, characterization and desalination study of novel PSAB and mPSAB blend membranes with polysulfone (PSf)[J]. Desalination, 2012, 295:35-42
    [32] LOVLEY D R, PHILLIPS E J P. Novel mode of microbial energy metabolism:Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6):1472-1480
    [33] 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8):1894-1898
    [34] LOGAN B E. Microbial Fuel Cells[M]. Hoboken:Wiley-Interscience, 2008
    [35] 林兴桃, 王小逸, 陈明, 等. 固相萃取高效液相色谱法测定水中邻苯二甲酸酯类环境激素[J]. 环境科学研究, 2004, 17(5):71-74
    [36] LIU Zhihua, LI Xiaoming, JIA Bin, et al. Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell[J]. Water Science and Technology, 2009, 60(9):2399-2404
    [37] 骆海萍, 刘广立, 张仁铎, 等. 高浓度苯酚的MFC降解及产电性能[J]. 环境科学学报, 2008, 28(11):2181-2185
    [38] LUO Haiping, LIU Gangli, ZHANG Renduo, et al. Phenol degradation in microbial fuel cells[J]. Chemical Engineering Journal, 2009, 147(2/3):259-264
    [39] ZHANG Cuiping, LI Mingchen, LIU Guangli, et al. Pyridine degradation in the microbial fuel cells[J]. Journal of Hazardous Materials, 2009, 172(1):465-471
    [40] LUO Yong, LIU Guangli, ZHANG Renduo, et al. Power generation from furfural using the microbial fuel cell[J]. Journal of Power Sources, 2010, 195(1):190-194
    [41] NEUFELD R, GREENFIELD J, RIEDER B. Temperature, cyanide and phenolic nitrification inhibition[J]. Water Research, 1986, 20(5):633-642
    [42] RAMANAVICIUS A, RAMANAVICIENE A. Hemoproteins in design of biofuel cells[J]. Fuel Cells, 2009, 9(1):25-36
    [43] 骆海萍, 张翠萍, 宋海红, 等. 降解苯的微生物燃料电池产电性能研究[J]. 中山大学学报(自然科学版), 2010, 49(1):113-118
    [44] 武晨, 张嘉琪, 王晓丽, 等. 以苯胺和葡萄糖为燃料的微生物燃料电池的产电特性研究[J]. 环境科学学报, 2011, 31(6):1227-1232
  • 加载中
计量
  • 文章访问数:  1865
  • HTML全文浏览数:  1317
  • PDF下载数:  399
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-07
  • 刊出日期:  2017-03-10

微生物燃料电池降解邻苯二甲酸酯及同步产电特性

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
基金项目:

国家自然科学基金资助项目(51278408)

陕西省科技统筹创新工程计划项目(2013KTCL03-16)

摘要: 构建双室微生物燃料电池(MFC)装置,研究了分别以乙酸钠(NaAc)作单一燃料和乙酸钠+邻苯二甲酸酯(PAEs)作混合燃料条件下,MFC的产电性能及其对邻苯二甲酸酯的去除效果。结果显示,微生物燃料电池对邻苯二甲酸酯类废水的化学需氧量(COD)的总去除率可达89%~94%,对邻苯二甲酸酯的去除率均在70%以上。以2 g·L-1 NaAc+10 mg·L-1 PAEs作混合燃料时,MFC获得最大(面积)功率密度58.78 mW·m-2,电池内阻213.50 Ω。实验结果表明,MFC能够利用高浓度邻苯二甲酸酯作燃料,在实现高效降解的同时稳定地向外输出电能,这为环境激素类难降解有机物的高效低耗处理提供了一种新的研究思路。

English Abstract

参考文献 (44)

目录

/

返回文章
返回