氨基改性MCM-48对水溶液中Pd2+的吸附

陈提先, 李耀威, 刘健, 邵华森. 氨基改性MCM-48对水溶液中Pd2+的吸附[J]. 环境工程学报, 2017, 11(3): 1450-1458. doi: 10.12030/j.cjee.201511062
引用本文: 陈提先, 李耀威, 刘健, 邵华森. 氨基改性MCM-48对水溶液中Pd2+的吸附[J]. 环境工程学报, 2017, 11(3): 1450-1458. doi: 10.12030/j.cjee.201511062
CHEN Tixian, LI Yaowei, LIU Jian, SHAO Huasen. Adsorption of palladium(Ⅱ)from aqueous solution by amino-functionalized MCM-48[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1450-1458. doi: 10.12030/j.cjee.201511062
Citation: CHEN Tixian, LI Yaowei, LIU Jian, SHAO Huasen. Adsorption of palladium(Ⅱ)from aqueous solution by amino-functionalized MCM-48[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1450-1458. doi: 10.12030/j.cjee.201511062

氨基改性MCM-48对水溶液中Pd2+的吸附

  • 基金项目:

    国家自然科学基金资助项目(21006037)

    广东省自然科学基金资助项目(06300845)

  • 中图分类号: X703

Adsorption of palladium(Ⅱ)from aqueous solution by amino-functionalized MCM-48

  • Fund Project:
  • 摘要: 采用3-氨丙基三乙氧基硅烷对MCM-48进行改性,制备出氨基改性介孔硅材料NH2-MCM-48,通过X射线衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)和N2吸附脱附(BET)对NH2-MCM-48进行表征,并探讨了NH2-MCM-48对水溶液中Pd2+的吸附性能。实验考察了初始pH、吸附时间、初始浓度、温度等因素对Pd2+吸附的影响,并讨论了吸附动力学和热力学特征。结果表明:在pH为4~5范围内,吸附效果最好,在150 min内达到吸附平衡。吸附动力学符合拟二级动力学方程,Langmuir等温吸附方程能较好地描述NH2-MCM-48对Pd2+的吸附特性,30℃静态吸附容量为59.67 mg·g-1;热力学分析结果表明,NH2-MCM-48对Pd2+的吸附是自发、吸热反应。吸附-脱附实验表明,0.1 mol·L-1 HCl+5%硫脲对Pd2+的洗脱效果好。
  • 加载中
  • [1] PARAJULI D, HIROTA K. Recovery of palladium using chemically modified cedar wood powder[J]. Journal of Colloid and Interface Science, 2009, 338(2):371-375
    [2] TAVAKOLI L, YAMINI Y, EBRAHIMZADEH H, et al. Development of cloud point extraction for simultaneous extraction and determination of gold and palladium using ICP-OES[J]. Journal of Hazardous Materials, 2008, 152(2):737-743
    [3] KRISHNA M V B, RANJIT M, CHANDRASEKARAN K, et al. On-line preconcentration and recovery of palladium from waters using polyaniline (PANI)loaded in mini-column and determination by ICP-MS;elimination of spectral interferences[J]. Talanta, 2009, 79(5):1454-1463
    [4] 李晓静, 梁莎, 郭学益. 生物吸附法从电子废弃物中回收贵金属的研究进展[J]. 贵金属, 2010, 31(3):64-69
    [5] ZHOU Limin, XU Jianping, LIANG Xizhen, et al. Adsorption of platinum(Ⅳ)and palladium(Ⅱ)from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):518-524
    [6] MPINGA C N, BRADSHAW S M, AKDOGAN G, et al. The extraction of Pt, Pd and Au from an alkaline cyanide simulated heap leachate by granular activated carbon[J]. Minerals Engineering, 2014, 55:11-17
    [7] LI Dandan, CHANG Xijun, HU Zheng, et al. Selective solid-phase extraction of trace Au(Ⅲ), Pd(Ⅱ)and Pt(Ⅳ)using activated carbon modified with 2, 6-diaminopyridine[J]. Microchim Acta, 2011, 174(1/2):131-136
    [8] PARK S I, KWAK I S, WON S W, et al. Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(Ⅲ)and Pd(Ⅱ):Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals[J]. Journal of Hazardous Materials, 2013, 248-249:211-218
    [9] SHARMA R K, PANDEY A, GULATI S, et al. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel[J]. Journal of Hazardous Materials, 2012, 209-210:285-292
    [10] QU Rongjun, NIU Yuzhong, LIU Jianhui, et al. Adsorption and desorption behaviors of Pd(Ⅱ)on silica-gel functionalized with ester- and amino-terminated dendrimer-like polyamidoamine polymers[J]. Reactive and Functional Polymers, 2008, 68(8):1272-1280
    [11] RUHELA R, SINGH K K, TOMAR B S, et al. Amberlite XAD-16 functionalized with 2-acetyl pyridine group for the solid phase extraction and recovery of palladium from high level waste solution[J]. Separation and Purification Technology, 2012, 99:36-43
    [12] BEHBAHANI M, NAJAFI F, AMINI M M, et al. Solid phase extraction using nanoporous MCM-41 modified with 3, 4-dihydroxybenzaldehyde for simultaneous preconcentration and removal of gold(Ⅲ), palladium(Ⅱ), copper(Ⅱ)and silver(Ⅰ)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):2248-2255
    [13] 徐晓亮, 赵兴祥, 蒋文娟, 等. 聚乙烯亚胺改性MCM-48的制备及其CO2吸附性能的研究[J]. 石油与天然气化工, 2009, 38(6):469-473
    [14] GURUNG M, ADHIKARI B B, ALAM S, et al. Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals[J]. Chemical Engineering Journal, 2013, 228:405-414
    [15] ZHENG Huajun, HU Denghong, ZHANG Lei, et al. Thiol functionalized mesoporous silicas for selective adsorption of precious metals[J]. Minerals Engineering, 2012, 35:20-26
    [16] SHARMA S, RAJESH N. 2-Mercaptobenzothiazole impregnated cellulose prepared by ultrasonication for the effective adsorption of precious metal palladium[J]. Chemical Engineering Journal, 2014, 241:112-121
    [17] MELÉNDEZ-ORTIZ H I, PERERA-MERCADO Y, MERCADO-SILVA J A, et al. Functionalization with amine-containing organosilane of mesoporous silica MCM-41 and MCM-48 obtained at room temperature[J]. Ceramics International, 2014, 40(7):9701-9707
    [18] LEÓNA G C D, PERERA-MERCADOA Y A, GARCÍA-CERDA L A, et al. Synthesis of amino-functionalized MCM-48 silica via direct co-condensation at room temperature[J]. Microporous and Mesoporous Materials, 2015, 204:156-162
    [19] MURESEANU M, REISS A, STEFANESCU I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation[J]. Chemosphere, 2008, 73(9):1499-1504
    [20] MORITZ M, ŁANIECKI M. SBA-15 mesoporous material modified with APTES as the carrier for 2-(3-benzoylphenyl)propionic acid[J]. Applied Surface Science, 2012, 258(19):7523-7529
    [21] QIANG Zhimin, BAO Xiaolei, BEN Weiwei. MCM-48 modified magnetic mesoporous nanocomposite as an attractive adsorbent for the removal of sulfamethazine from water[J]. Water Research, 2013, 47(12):4107-4114
    [22] WANG Jingjing, LU Jinming, YANG Jianhua, et al. Synthesis of ordered MCM-48 by introducing economical anionic surfactant as co-template[J]. Materials Letters, 2012, 78:199-201
    [23] SHAHBAZI A, YOUNESI H, BADIEI A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ)and Cd(Ⅱ)heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal, 2011, 168(2):505-518
    [24] SU Baolian, MA Xuchu, XU Fen, et al. SBA-15 mesoporous silica coated with macrocyclic calix
    [25] arene derivatives:Solid extraction phases for heavy transition metal ions[J]. Journal of Colloid and Interface Science, 2011, 360(1):86-92
    [26] 杨佳, 何静, 段雪, 等. 硅甲基接枝改性MAM-48的结构特征及表面性质[J]. 无机化学学报, 2002, 18(9):879-886
    [27] LI Kexin, ZENG Zhenxing, XIONG Jingjing, et al. Fabrication of mesoporous Fe3O4@SiO2@CTAB-SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465:113-123
    [28] 廖年礁, 范益群. 甲基官能化MCM-48分子筛的制备与表征[J]. 膜科学与技术, 2012, 32(3):17-21
    [29] 杨娜, 朱申敏, 张荻. 氨基改性介孔二氧化硅的制备及其吸附性能研究[J]. 无机化学学报, 2007, 23(9):1627-1630
    [30] ZHOU Limin, LIU Jinhui, LIU Zhirong. Adsorption of platinum(Ⅳ)and palladium(Ⅱ)from aqueous solution by thiourea-modified chitosan microspheres[J]. Journal of Hazardous Materials, 2009, 172(1):439-446
    [31] PARK J, WON S W, MAO Juan, et al. Recovery of Pd(Ⅱ)from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):794-800
    [32] 张继义, 梁丽萍, 蒲丽君, 等. 小麦秸秆对Cr(Ⅵ)的吸附特性及动力学、热力学分析[J]. 环境科学研究, 2010, 23(12):1546-1552
    [33] WU Xiuwen, MA Hongwen, ZHANG Lintao, et al. Adsorption properties and mechanism of mesoporous adsorbents prepared with fly ash for removal of Cu(Ⅱ)in aqueous solution[J]. Applied Surface Science, 2012, 261:902-907
    [34] GANDHI M R, MEENAKSHI S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu(Ⅱ)and Pb(Ⅱ)[J]. International Journal of Biological Macromolecules, 2012, 50(3):650-657
    [35] WU Xiuwen, MA Hongwen, ZHANG Yanrong. Adsorption of chromium(Ⅵ)from aqueous solution by a mesoporous aluminosilicate synthesized from microcline[J]. Applied Clay Science, 2010, 48(3):538-541
    [36] FUJIWARA K, RAMESH A, MAKI T, et al. Adsorption of platinum (Ⅳ), palladium (Ⅱ)and gold (Ⅲ)from aqueous solutions onto L-lysine modified crosslinked chitosan resin[J]. Journal of Hazardous Materials, 2007, 146(1/2):39-50
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览数:  916
  • PDF下载数:  386
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-26
  • 刊出日期:  2017-03-10

氨基改性MCM-48对水溶液中Pd2+的吸附

  • 1. 华南师范大学化学与环境学院, 广东省水环境生态治理与修复工程技术研究中心, 广州 510006
基金项目:

国家自然科学基金资助项目(21006037)

广东省自然科学基金资助项目(06300845)

摘要: 采用3-氨丙基三乙氧基硅烷对MCM-48进行改性,制备出氨基改性介孔硅材料NH2-MCM-48,通过X射线衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)和N2吸附脱附(BET)对NH2-MCM-48进行表征,并探讨了NH2-MCM-48对水溶液中Pd2+的吸附性能。实验考察了初始pH、吸附时间、初始浓度、温度等因素对Pd2+吸附的影响,并讨论了吸附动力学和热力学特征。结果表明:在pH为4~5范围内,吸附效果最好,在150 min内达到吸附平衡。吸附动力学符合拟二级动力学方程,Langmuir等温吸附方程能较好地描述NH2-MCM-48对Pd2+的吸附特性,30℃静态吸附容量为59.67 mg·g-1;热力学分析结果表明,NH2-MCM-48对Pd2+的吸附是自发、吸热反应。吸附-脱附实验表明,0.1 mol·L-1 HCl+5%硫脲对Pd2+的洗脱效果好。

English Abstract

参考文献 (36)

目录

/

返回文章
返回