碳纳米管催化臭氧降解PFOS动力学与过程控制

臧春元, 张硕, 孙力平, 樊雪峰. 碳纳米管催化臭氧降解PFOS动力学与过程控制[J]. 环境工程学报, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059
引用本文: 臧春元, 张硕, 孙力平, 樊雪峰. 碳纳米管催化臭氧降解PFOS动力学与过程控制[J]. 环境工程学报, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059
ZANG Chunyuan, ZHANG Shuo, SUN Liping, FAN Xuefeng. Kinetic and process control of CNT-induced catalytic ozonation of PFOS[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059
Citation: ZANG Chunyuan, ZHANG Shuo, SUN Liping, FAN Xuefeng. Kinetic and process control of CNT-induced catalytic ozonation of PFOS[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059

碳纳米管催化臭氧降解PFOS动力学与过程控制

  • 基金项目:

    国家自然科学基金资助项目(51478292)

  • 中图分类号: X52

Kinetic and process control of CNT-induced catalytic ozonation of PFOS

  • Fund Project:
  • 摘要: 针对全氟化合物难降解问题,通过碳纳米管(CNT)诱导臭氧高级氧化路径,研究非均相催化体系对高稳性全氟辛烷磺酸(PFOS)的降解效能与机制。结果表明:CNT介质可催化臭氧通过C-F断键对PFOS强制氧化分解,其准一级降解常数(k=0.037 min-1,5 mg·L-1 CNT)均高于碱式臭氧处理(k=0.009 min-1,pH=11)以及高负荷活性炭颗粒(k=0.013 min-1,5 g·L-1 GAC);溶液pH是控制催化过程的重要因素,酸性或碱性环境由于PFOS吸附阻隔均不利于CNT表面与溶解O3的接触催化反应;结合羟基自由基淬灭实验,推测CNT通过表面石墨层促成·OH大量生成并在固/液界面原位降解PFOS。研究结果可为开发利用CNT介质强化臭氧水处理过程提供科学依据。
  • 加载中
  • [1] 周启星,胡献刚. PFOS/PFOA环境污染行为与毒性效应及机理研究进展[J]. 环境科学,2007,28(10):2153-2162
    [2] 栾萱,周琴,毕磊,等. 全氟辛烷磺酸盐(PFOS)在藻渣/小球藻上的吸附行为及机理[J]. 环境工程学报,2014,8(3):897-902
    [3] SINCLAIR E,KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology,2006,40(5):1408-1414
    [4] SCHULTZ M M,HIGGINS C P,HUSET C A,et al. Fluorochemical mass flows in a municipal wastewater treatment facility[J]. Environmental Science & Technology,2006,40(23):7350-7357
    [5] YU Jing,HU Jiangyong,TANAKA S,et al. Perfluorooctane sulfonate (PFOS)and perfluorooctanoic acid (PFOA)in sewage treatment plants[J]. Water Research,2009,43(9):2399-2408
    [6] MAK Y L,TANIYASU S,YEUNG L W Y,et al. Perfluorinated compounds in tap water from China and several other countries[J]. Environmental Science & Technology,2009,43(13):4824-4829
    [7] 金一和,刘晓,秦红梅,等. 我国部分地区自来水和不同水体中的PFOS污染[J]. 中国环境科学,2004,24(2):166-169
    [8] 金一和,丁梅,翟成,等. 长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查[J]. 生态环境,2006,15(3):486-489
    [9] 金一和,刘晓,张迅,等. 人血清中全氟辛烷磺酰基化合物污染现状[J]. 中国公共卫生,2003,19(10):1200-1201
    [10] JIN Yihe,LIU Wei,SATO I,et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere,2009,77(5):605-611
    [11] FUENTES S,COLOMINA M T,VICENS P,et al. Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice:Effects on postnatal development and behavior of the offspring[J]. Toxicological Sciences,2007,98(2):589-598
    [12] ANKLEY G T,KUEHL D W K,KAHL M D,et al. Reproductive and developmental toxicity and bioconcentration of perfluorooctanesulfonate in a partial life-cycle test with the fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry,2005,24(9):2316-2324
    [13] KEIL D E,MEHLMANN T,BUTTERWORTH L,et al. Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice[J]. Toxicological Sciences,2008,103(1):77-85
    [14] JOHANSSON N,ERIKSSON P,VIBERG H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain[J]. Toxicological Sciences,2009,108(2):412-418
    [15] REY A,GARCÍA-MUÑOZ P,HERNÁNDEZ-ALONSO M D,et al. WO3-TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent[J]. Applied Catalysis B:Environmental,2014,154-155:274-284
    [16] IKHLAQ A,BROWN D R,KASPRZYK-HORDERN B. Catalytic ozonation for the removal of organic contaminants in water on alumina[J]. Applied Catalysis B:Environmental,2015,165:408-418
    [17] ZHU Jixin,YIN Zongyou,YANG Dan,et al. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation[J]. Energy & Environmental Science,2013,6(3):987-993
    [18] DE VERA G A,STALTER D,GERNJAK W,et al. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation[J]. Water Research,2015,87:49-58
    [19] GONÇALVES A G,ÓRFÃO J J M,PEREIRA M F R. Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials[J]. Chemical Engineering Journal,2014,250:366-376
    [20] OULTON R,HAASE J P,KAALBERG S,et al. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes:Performance optimization and demonstration of a reactive CNT filter[J]. Environmental Science & Technology,2015,49(6):3687-3697
    [21] FAN Xiaolei,RESTIVO J,ÓRFÃO J J M,et al. The role of multiwalled carbon nanotubes (MWCNTs)in the catalytic ozonation of atrazine[J]. Chemical Engineering Journal,2014,241:66-76
    [22] ZHANG Shuo,WANG Dong,ZHOU Liang,et al. Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material:Multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs)[J]. Chemical Engineering Journal,2013,217:99-107
    [23] 刘正乾,马军,赵雷. 载Pt石墨催化臭氧化降解水中草酸的研究[J]. 环境科学,2007,28(6):1258-1263
    [24] 顾书英,吴琪琳. 碳纳米管应用研究的现状和未来[J]. 同济大学学报,2002,30(2):213-217
    [25] VITTENET J,ABOUSSAOUD W,MENDRET J,et al. Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water[J]. Applied Catalysis A:General,2015,504:519-532
    [26] FORNI L,BAHNEMANN D,HART E J. Mechanism of the hydroxide ion-initiated decomposition of ozone in aqueous solution[J]. The Journal of Physical Chemistry,1982,86(2):255-259
  • 加载中
计量
  • 文章访问数:  1599
  • HTML全文浏览数:  1202
  • PDF下载数:  372
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-08
  • 刊出日期:  2017-03-10

碳纳米管催化臭氧降解PFOS动力学与过程控制

  • 1.  天津城建大学环境与市政工程学院, 天津 300384
  • 2.  天津市水质科学与技术重点实验室, 天津 300384
基金项目:

国家自然科学基金资助项目(51478292)

摘要: 针对全氟化合物难降解问题,通过碳纳米管(CNT)诱导臭氧高级氧化路径,研究非均相催化体系对高稳性全氟辛烷磺酸(PFOS)的降解效能与机制。结果表明:CNT介质可催化臭氧通过C-F断键对PFOS强制氧化分解,其准一级降解常数(k=0.037 min-1,5 mg·L-1 CNT)均高于碱式臭氧处理(k=0.009 min-1,pH=11)以及高负荷活性炭颗粒(k=0.013 min-1,5 g·L-1 GAC);溶液pH是控制催化过程的重要因素,酸性或碱性环境由于PFOS吸附阻隔均不利于CNT表面与溶解O3的接触催化反应;结合羟基自由基淬灭实验,推测CNT通过表面石墨层促成·OH大量生成并在固/液界面原位降解PFOS。研究结果可为开发利用CNT介质强化臭氧水处理过程提供科学依据。

English Abstract

参考文献 (26)

目录

/

返回文章
返回