Fe2+活化过硫酸氢钾复合盐降解吲哚美辛

李若白, 刘国光, 吕文英, 林晓璇, 陈智明. Fe2+活化过硫酸氢钾复合盐降解吲哚美辛[J]. 环境工程学报, 2016, 10(10): 5429-5432. doi: 10.12030/j.cjee.201505156
引用本文: 李若白, 刘国光, 吕文英, 林晓璇, 陈智明. Fe2+活化过硫酸氢钾复合盐降解吲哚美辛[J]. 环境工程学报, 2016, 10(10): 5429-5432. doi: 10.12030/j.cjee.201505156
LI Ruobai, LIU Guoguang, LYU Wenying, LIN Xiaoxuan, CHEN Zhiming. Degradation of indomethacin in aqueous by peroxymonosulfate activated by ferrous ion[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5429-5432. doi: 10.12030/j.cjee.201505156
Citation: LI Ruobai, LIU Guoguang, LYU Wenying, LIN Xiaoxuan, CHEN Zhiming. Degradation of indomethacin in aqueous by peroxymonosulfate activated by ferrous ion[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5429-5432. doi: 10.12030/j.cjee.201505156

Fe2+活化过硫酸氢钾复合盐降解吲哚美辛

  • 基金项目:

    国家自然科学基金资助项目(21377031)

  • 中图分类号: X131

Degradation of indomethacin in aqueous by peroxymonosulfate activated by ferrous ion

  • Fund Project:
  • 摘要: 通过亚铁离子活化过硫酸氢钾复合盐产生氧化性的硫酸根自由基,以吲哚美辛(IM)为目标污染物,研究了不同亚铁离子浓度和过硫酸氢钾浓度,以及加入Cl-离子和腐殖酸对吲哚美辛降解情况的影响。结果表明,[IM]:[PMS]:[Fe2+]=1:2:2条件下,IM的去除率接近100%;低浓度的Cl-抑制吲哚美辛的降解,高浓度则为促进作用;而腐殖酸都在不同程度上抑制了吲哚美辛的降解。经淬灭实验表明,亚铁离子活化过硫酸氢钾降解吲哚美辛中起主要作用的自由基是SO4-·。该方法能在短时间内高效降解吲哚美辛,为实际废水中吲哚美辛去除提供参考。
  • 加载中
  • [1] TERNES T.A.,MEISENHEIMER M.,MCDOWELL D.,et al.Removal of pharmaceuticals during drinking water treatment.Environmental Science & Technology,2002,36(17):3855-3863
    [2] EDWARDS M.,TOPP E.,METCALFE C.D.,et al.Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field.Science of the Total Environment,2009,407(14):4220-4230
    [3] YU J.T.,BOUWER E.J.,COELHAN M.Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent.Agricultural Water Management,2006,86(1/2):72-80
    [4] LIN A.Y.C.,YU T.H.,LIN Chengfang.Pharmaceutical contamination in residential,industrial,and agricultural waste streams:Risk to aqueous environments in Taiwan.Chemosphere,2008,74(1):131-141
    [5] RATOLA N.,CINCINELLI A.,ALVES A.,et al.Occurrence of organic microcontaminants in the wastewater treatment process.A mini review.Journal of Hazardous Materials,2012,239-240:1-18
    [6] LIANG Chenju,BRUELL C.J.,MARLEY M.C.,et al.Persulfate oxidation for in situ remediation of TCE.I.Activated by ferrous ion with and without a persulfate-thiosulfate redox couple.Chemosphere,2004,55(9):1213-1223
    [7] LIANG Chenju,BRUELL C.J.,MARLEY M.C.,et al.Persulfate oxidation for in situ remediation of TCE.II.Activated by chelated ferrous ion.Chemosphere,2004,55(9):1225-1233
    [8] HORI H.,YAMAMOTO A.,HAYAKAWA E.,et al.Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant.Environmental Science & Technology,2005,39(7):2383-2388
    [9] ANIPSITAKIS G.P.,DIONYSIOU D.D.Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.Environmental Science & Technology,2003,37(20):4790-4797
    [10] ANIPSITAKIS G.P.,DIONYSIOU D.D.Radical generation by the interaction of transition metals with common oxidants.Environmental Science & Technology,2004,38(13):3705-3712
    [11] NETA P.,MADHAVAN V.,ZEMEL H.,et al.Rate constants and mechanism of reaction of SO4- with aromatic compounds.Journal of the American Chemical Society,1977,99(1):163-164
    [12] RASTOGI A.,AL-ABED S.R.,DIONYSIOU D.D.Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems.Applied Catalysis B:Environmental,2009,85(3/4):171-179
    [13] YUAN Ruixia,RAMJAUN S.N.,WANG Zhaohui,et al,Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process:Implications for formation of chlorinated aromatic compounds.Journal of Hazardous Materials,2011,196:173-179
    [14] OUYANG Bin,FANG Haojie,ZHU Chengzhu,et al.Reactions between the SO4- radical and some common anions in atmospheric aqueous droplets.Journal of Environmental Sciences,2005,17(5):786-788
    [15] YU Xiaoying,BAO Zhenchuan,BARKER J.R.Free radical reactions involving Cl·,Cl2-·,and SO4-· in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl-.The Journal of Physical Chemistry A,2004,108(2):295-308
    [16] AHMED M.M.,BARBATI S.,DOUMENQ P.,et al.Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination.Chemical Engineering Journal,2012,197:440-447
    [17] WANG G.S.,KANG S.F.,YANG H.J.,et al.Removal of dissolved natural organic matter from source water with alum coagulation.Environmental Technology,2002,23(12):1415-1423
    [18] HAYON E.,TREININ A.,WILF J.Electronic spectra,photochemistry,and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems.SO2-,SO3-,SO4-,and SO5- radicals.Journal of the American Chemical Society,1972,94(1):47-57
  • 加载中
计量
  • 文章访问数:  1853
  • HTML全文浏览数:  1425
  • PDF下载数:  484
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-06-26
  • 刊出日期:  2016-10-20

Fe2+活化过硫酸氢钾复合盐降解吲哚美辛

  • 1. 广东工业大学环境科学与工程学院, 广州 510006
基金项目:

国家自然科学基金资助项目(21377031)

摘要: 通过亚铁离子活化过硫酸氢钾复合盐产生氧化性的硫酸根自由基,以吲哚美辛(IM)为目标污染物,研究了不同亚铁离子浓度和过硫酸氢钾浓度,以及加入Cl-离子和腐殖酸对吲哚美辛降解情况的影响。结果表明,[IM]:[PMS]:[Fe2+]=1:2:2条件下,IM的去除率接近100%;低浓度的Cl-抑制吲哚美辛的降解,高浓度则为促进作用;而腐殖酸都在不同程度上抑制了吲哚美辛的降解。经淬灭实验表明,亚铁离子活化过硫酸氢钾降解吲哚美辛中起主要作用的自由基是SO4-·。该方法能在短时间内高效降解吲哚美辛,为实际废水中吲哚美辛去除提供参考。

English Abstract

参考文献 (18)

目录

/

返回文章
返回