接触辉光放电等离子体处理有机砷废水

胡平, 郑星, 刘玉坤, 郭建波, 李素娟, 郑经堂. 接触辉光放电等离子体处理有机砷废水[J]. 环境工程学报, 2016, 10(10): 5648-5652. doi: 10.12030/j.cjee.201504130
引用本文: 胡平, 郑星, 刘玉坤, 郭建波, 李素娟, 郑经堂. 接触辉光放电等离子体处理有机砷废水[J]. 环境工程学报, 2016, 10(10): 5648-5652. doi: 10.12030/j.cjee.201504130
HU Ping, ZHENG Xing, LIU Yukun, GUO Jianbo, LI Sujuan, ZHENG Jingtang. Treatment of organoarsenic wastewater using contact glow discharge plasma[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5648-5652. doi: 10.12030/j.cjee.201504130
Citation: HU Ping, ZHENG Xing, LIU Yukun, GUO Jianbo, LI Sujuan, ZHENG Jingtang. Treatment of organoarsenic wastewater using contact glow discharge plasma[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5648-5652. doi: 10.12030/j.cjee.201504130

接触辉光放电等离子体处理有机砷废水

  • 基金项目:

    中国石油大学(华东)研究生自主创新基金资助项目(14CX06117A)

  • 中图分类号: X523

Treatment of organoarsenic wastewater using contact glow discharge plasma

  • Fund Project:
  • 摘要: 洛克沙砷(ROX)饲料添加剂在农业的普遍使用,导致大量的ROX进入自然水体,引起环境污染。为了修复含ROX废水,首次提出采用接触辉光放电等离子体(CGDP)氧化ROX,并考察了多种因素对ROX降解效果的影响。结果表明,ROX能被CGDP完全氧化降解,且As(V)是其最终降解产物;输入能量的增加利于ROX的氧化,而pH值对ROX的降解影响较小;在辉光放电最佳条件(输入能量58 W,pH 4.0)下,加入100 μmol·L-1 ROX,42 min内降解率为97%,As(V)的生成量可达95 μmol·L-1。此外,加入一定量的Fe(II),因其可以通过利用CGDP原位产生的H2O2通过芬顿反应产生大量额外的·OH,而能显著地催化ROX转化为无机砷。通过自由基捕获实验,证明了·OH在ROX降解中起主要作用并探索了其氧化降解机理。
  • 加载中
  • [1] ADAK A., MANGALGIRI K. P., LEE J., et al. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals. Water Research, 2015, 70: 74-85
    [2] SINGH R., SINGH S., PARIHAR P., et al. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 2015, 112: 247-270
    [3] JIANG Bo, Guo Jianbo, Wang Zhaohui, et al. A green approach towards simultaneous remediations of chromium (VI) and arsenic (III) in aqueous solution. Chemical Engineering Journal, 2015, 262: 1144-1151
    [4] 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水. 环境工程学报, 2014, 8(9): 3683-3688 YAN Qun, GUI Yonggang, ZHOU Na'na, et al. Treatment of arsenic-containing mineral processing wastewater by coagulation and sedimentation process. Chinese Journal of Environmental Engineering, 2014, 8(9): 3683-3688(in Chinese)
    [5] 谢冬梅, 曹林洪, 崔金立. 二氧化钛颗粒制备及其对水中三价砷的去除. 环境工程学报, 2013, 7(4): 1279-1284 XIE Dongmei, CAO Linhong, CUI Jinli. Preparation and evaluation of TiO2 granule for As (III) removal from water. Chinese Journal of Environmental Engineering, 2013, 7(4): 1279-1284(in Chinese)
    [6] SHI Lin, WANG Wei, YUAN Shoujun, et al. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environmental Science & Technology, 2014, 48(14): 7951-7958
    [7] ZHU Xiangdong, WANG Yujun, LIU Cun, et al. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. Chemosphere, 2014, 107: 274-281
    [8] CZAPLICKA M., BRATEK Ł., Jaworek K., et al. Photo-oxidation of p-arsanilic acid in acidic solutions: Kinetics and the identification of by-products and reaction pathways. Chemical Engineering Journal, 2014, 243: 364-371
    [9] HUANG Lianxi, YAO Lixiao, HE Zhaohuan, et al. Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by vegetables. Chemosphere, 2014, 100: 57-62
    [10] GARBARINO J. R., BEDNAR A. J., RUTHERFORD D. W., et al. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environmental Science & Technology, 2003, 37(8): 1509-1514
    [11] JUNG B. K., JUN J. W., HASAN Z., et al. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chemical Engineering Journal, 2015, 267: 9-15
    [12] ZHENG Shan, JIANG Wenjun, CAI Yong, et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2suspension. Catalysis Today, 2014, 224: 83-88
    [13] JIANG Bo, ZHENG Jingtang, QIU Shi, et al. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348-368
    [14] DHAR R. K., ZHENG Y., RUBENSTONE J., et al. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Analytica Chimica Acta, 2004, 526(2): 203-209
    [15] LIU Renlan, GUO Yaoguang, WANG Zhaohui, et al. Iron species in layered clay: Efficient electron shuttles for simultaneous conversion of dyes and Cr (VI). Chemosphere, 2014, 95: 643-646
    [16] EISENBERG G. Colorimetric determination of hydrogen peroxide. Industrial and Engineering Chemistry Analytical Edition, 1943, 15(5): 327-328
    [17] ISHIBASHI K. I., FUJISHIMA A., WATANABE T., et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochemistry Communications, 2000, 2(3): 207-210
    [18] LIU Yongjun. Simultaneous oxidation of phenol and reduction of Cr (VI) induced by contact glow discharge electrolysis. Journal of Hazardous Materials, 2009, 168(2/3): 992-996
    [19] XU Tielian, CAI Yong, O'SHEA K. E. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environmental Science & Technology, 2007, 41(15): 5471-5477
    [20] JIANG Bo, HU Ping, ZHENG Xing, et al. Rapid oxidation and immobilization of arsenic by contact glow discharge plasma in acidic solution. Chemosphere, 2015, 125: 220-226
    [21] XU Tielian, KAMAT P. V., JOSHI S., et al. Hydroxyl radical mediated degradation of phenylarsonic acid. The Journal of Physical Chemistry A, 2007, 111(32): 7819-7824
  • 加载中
计量
  • 文章访问数:  1385
  • HTML全文浏览数:  1017
  • PDF下载数:  573
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-05-11
  • 刊出日期:  2016-10-20

接触辉光放电等离子体处理有机砷废水

  • 1. 中国石油大学(华东)重质油国家重点实验室, 青岛 266580
  • 2. 北京中能环科技术发展有限公司, 北京 100080
基金项目:

中国石油大学(华东)研究生自主创新基金资助项目(14CX06117A)

摘要: 洛克沙砷(ROX)饲料添加剂在农业的普遍使用,导致大量的ROX进入自然水体,引起环境污染。为了修复含ROX废水,首次提出采用接触辉光放电等离子体(CGDP)氧化ROX,并考察了多种因素对ROX降解效果的影响。结果表明,ROX能被CGDP完全氧化降解,且As(V)是其最终降解产物;输入能量的增加利于ROX的氧化,而pH值对ROX的降解影响较小;在辉光放电最佳条件(输入能量58 W,pH 4.0)下,加入100 μmol·L-1 ROX,42 min内降解率为97%,As(V)的生成量可达95 μmol·L-1。此外,加入一定量的Fe(II),因其可以通过利用CGDP原位产生的H2O2通过芬顿反应产生大量额外的·OH,而能显著地催化ROX转化为无机砷。通过自由基捕获实验,证明了·OH在ROX降解中起主要作用并探索了其氧化降解机理。

English Abstract

参考文献 (21)

目录

/

返回文章
返回