连续流反应器污水硝化过程中的N2O释放

吴光学, 王恩革, 邢丽贞, 管运涛. 连续流反应器污水硝化过程中的N2O释放[J]. 环境工程学报, 2014, 8(3): 1067-1072.
引用本文: 吴光学, 王恩革, 邢丽贞, 管运涛. 连续流反应器污水硝化过程中的N2O释放[J]. 环境工程学报, 2014, 8(3): 1067-1072.
Wu Guangxue, Wang Enge, Xing Lizhen, Guan Yuntao. N2O emission during nitrification in constant flow biological wastewater treatment systems[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1067-1072.
Citation: Wu Guangxue, Wang Enge, Xing Lizhen, Guan Yuntao. N2O emission during nitrification in constant flow biological wastewater treatment systems[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1067-1072.

连续流反应器污水硝化过程中的N2O释放

  • 基金项目:

    深圳市科工贸信委基础研究计划项目(JC201006030878A)

  • 中图分类号: X703

N2O emission during nitrification in constant flow biological wastewater treatment systems

  • Fund Project:
  • 摘要: 污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。
  • 加载中
  • [1] IPCC. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, U.K., 2001
    [2] Khalil M. A. K., Rasmussen R. A. The global sources of nitrous oxide. Journal of Geophysical Research: Atmospheres, 1992, 97(D13): 14651-14660
    [3] Kampschreur M. J., Temmink H., Kleerebezem R., et al. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093-4103
    [4] 刘秀红, 彭永臻, 马涛, 等. 硝化类型对污水脱氮过程中N2O产生量的影响. 中国环境科学, 2007, 27(5): 633-637 Liu X. H., Peng Y. Z., Ma T., et al. Influence of nitrification type on N2O production in nitrogen removal treating domestic wastewater. China Environmental Science, 2007, 27(5): 633-637(in Chinese)
    [5] Liu X., Peng Y., Wu C., et al. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor. Journal of Environmental Sciences, 2008, 20(6): 641-645
    [6] Wunderlin P., Mohn J., Joss A., et al. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 2012, 46(4): 1027-1037
    [7] Tallec G., Garnier J., Billen G., et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research, 2006, 40(15): 2972-2980
    [8] Zheng H., Hanaki K., Matsuo T. Production of nitrous oxide gas during nitrification of wastewater. Water Science and Technology, 1994, 30(6): 133-141
    [9] Kong Q., Liang S., Zhang J., et al. N2O emission in a partial nitrification system: Dynamic emission characteristics and the ammonium-oxidizing bacteria community. Bioresource Technology, 2013, 127: 400-406
    [10] Smolders G. J. F., Van der Meij J., Van Loosdrecht M. C. M., et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnology and Bioengineering, 1994, 43(6): 461-470
    [11] 国家环境保护局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [12] Park K. Y., Lee J. W. Effects of fill modes on N2O emission from the SBR treating domestic wastewater. Water Science and Technology, 2001, 43(3): 147-150
    [13] Park K. Y., Inamori Y., Mizuochi M., et al. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. Journal of Bioscience and Bioengineering, 2000, 90(3): 247-252
    [14] Dytczak M. A., Londry K. L., Oleszkiewicz J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Research, 2008, 42(8-9): 2320-2328
    [15] Kampschreur M. J., Tan N. C. G., Kleerebezem R., et al. Effect of dynamic process conditions on nitrogen oxides emission from nitrifying culture. Environmental Science & Technology, 2008, 42(2): 429-435
    [16] Rassamee V., Sattayatewa C., Pagilla K., et al. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnology and Bioengineering, 2011, 108(9):2036-2045
    [17] Kim D. J., Kim Y. Effect of ammonium concentration on the emission of N2O under oxygen limited autotrophic wastewater nitrification. Journal of Microbiology and Biotechnology, 2011, 21(9): 988-994
  • 加载中
计量
  • 文章访问数:  1615
  • HTML全文浏览数:  869
  • PDF下载数:  713
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-03-17
  • 刊出日期:  2014-03-01
吴光学, 王恩革, 邢丽贞, 管运涛. 连续流反应器污水硝化过程中的N2O释放[J]. 环境工程学报, 2014, 8(3): 1067-1072.
引用本文: 吴光学, 王恩革, 邢丽贞, 管运涛. 连续流反应器污水硝化过程中的N2O释放[J]. 环境工程学报, 2014, 8(3): 1067-1072.
Wu Guangxue, Wang Enge, Xing Lizhen, Guan Yuntao. N2O emission during nitrification in constant flow biological wastewater treatment systems[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1067-1072.
Citation: Wu Guangxue, Wang Enge, Xing Lizhen, Guan Yuntao. N2O emission during nitrification in constant flow biological wastewater treatment systems[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1067-1072.

连续流反应器污水硝化过程中的N2O释放

  • 1. 清华大学深圳研究生院深圳市环境微生物利用与安全控制重点实验室, 深圳 518055
  • 2. 山东建筑大学市政与环境工程学院, 济南 250101
基金项目:

深圳市科工贸信委基础研究计划项目(JC201006030878A)

摘要: 污水生物脱氮硝化阶段是温室气体一氧化二氮(N2O)的重要释放源。采用连续流反应器在2种进水氨氮(NH4-N,低氮反应器60 mg/L和高氮反应器180 mg/L)浓度条件下驯化硝化菌,并研究了不同初始NH4-N浓度和不同初始亚硝酸盐(NO2-N)浓度条件下所驯化硝化菌释放N2O的特征。结果表明在反应器运行过程中2个反应器释放N2O较少,均小于去除NH4-N浓度的0.01%;N2O的释放均随着初始NH4-N浓度或初始NO2-N浓度的升高而增加;不同初始NH4-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在0.51%~1.40%之间,高氮反应器驯化硝化菌在0.29%~1.27%之间;不同初始NO2-N浓度条件下,低氮反应器驯化硝化菌的N2O释放率在1.38%~3.78%之间,高氮反应器驯化硝化菌在1.16-5.81%之间。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回