用于磷吸附的载铁(β-FeOOH)沸石制备及特性

张多, 张盼月, 田帅, 马博强. 用于磷吸附的载铁(β-FeOOH)沸石制备及特性[J]. 环境工程学报, 2014, 8(2): 499-504.
引用本文: 张多, 张盼月, 田帅, 马博强. 用于磷吸附的载铁(β-FeOOH)沸石制备及特性[J]. 环境工程学报, 2014, 8(2): 499-504.
Zhang Duo, Zhang Panyue, Tian Shuai, Ma Boqiang. Preparation of β-FeOOH loaded-zeolite and its characteristics for phosphorus adsorption[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 499-504.
Citation: Zhang Duo, Zhang Panyue, Tian Shuai, Ma Boqiang. Preparation of β-FeOOH loaded-zeolite and its characteristics for phosphorus adsorption[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 499-504.

用于磷吸附的载铁(β-FeOOH)沸石制备及特性

  • 基金项目:

    国家自然科学基金资助项目(51178047)

  • 中图分类号: X703

Preparation of β-FeOOH loaded-zeolite and its characteristics for phosphorus adsorption

  • Fund Project:
  • 摘要: 以天然沸石为载体,采用FeCl3水解法制备用于磷吸附的载铁沸石(β-FeOOH-Z),优化β-FeOOH-Z的制备条件,包括FeCl3溶液浓度、负载pH值、负载时间、负载温度和烘干温度,并利用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对β-FeOOH-Z及其磷吸附特性进行分析。结果表明,β-FeOOH-Z的优化制备条件为:FeCl3溶液浓度1 mol/L、负载pH值6、负载时间24 h、负载温度25℃和烘干温度60℃。优化制备条件下,100~120目沸石的载铁量为100.2 mg/g,铁的负载率为18%,其磷吸附量为7.68 mg/g,比天然沸石提高79.6%。XRD分析结果表明,β-FeOOH-Z中的杂质元素较天然沸石减少,并有效负载β-FeOOH;制备条件对β-FeOOH-Z的成分有较大影响,FeCl3溶液浓度较低、负载温度和烘干温度过高均使β-FeOOH-Z中含有α-Fe2O3,并导致其磷吸附效率降低。FTIR分析结果表明,β-FeOOH-Z的表面羟基在其吸附磷过程中起重要作用,羟基与磷酸根离子的配位交换是β-FeOOH-Z吸附磷的主要作用机制。
  • 加载中
  • [1] De Vicente I., Jensen H. S., Andersen F. Factors affecting phosphate adsorption to aluminum in lake water: Implications for lake restoration. Science of the Total Environment, 2008, 389(1): 29-36
    [2] Tzou Y. M., Wang M. K., Loeppert R. H. Effects of phosphate, HEDTA, and light sources on Cr(Ⅵ) retention by goethite. Soil and Sediment Contamination, 2003, 12(1): 69-84
    [3] Sujana M. G., Pradhan H. K., Anand S. Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 2009, 161(1): 120-125
    [4] Zhao H., Stanforth R. Competitive adsorption of phosphate and arsenate on goethite. Environmental Science & Technology, 2001, 35(24): 4753-4757
    [5] Weerasooriya R., Tobschall H. J. Mechanistic modeling of chromate adsorption onto goethite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 162(1-3): 167-175
    [6] 郭学军, 陈甫华. 载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水As(Ⅴ)的研究. 环境科学, 2005, 26(3): 66-72 Guo X. J., Chen F. H. Elimination of As(Ⅴ) by bead cellulose adsorbent loaded with Fe (β-FeOOH) from groundwater. Environmental Science, 2005, 26(3): 66-72 (in Chinese)
    [7] 宋永会, 钱锋, 弓爱君, 等. 钙型天然斜发沸石去除猪场废水中营养物的实验研究. 环境工程学报, 2011, 5(8): 1701-1706 Song Y. H., Qian F., Gong A. J., et al. Experimental study on nutrients removal from swine wastewater by natural Ca-type clinoptilolite. Chinese Journal of Environmental Engineering, 2011, 5(8): 1701-1706 (in Chinese)
    [8] Ouki S. K., Kavannagh M. Treatment of metals-contaminated wastewaters by use of natural zeolites. Water Science and Technology, 1999, 39(10-11): 115-122
    [9] Malekpour A., Millani M. R., Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. Desalination, 2008, 225(1-3): 199-208
    [10] 姚淑华, 贾永锋, 汪国庆, 等. 活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(Ⅴ). 过程工程学报, 2009, 9(2): 250-256 Yao S. H., Jia Y. F., Wang G. Q., et al. Removal of As(Ⅴ) from drinking water by activated carbon loaded with Fe(Ⅲ) adsorbent. The Chinese Journal of Process Engineering, 2009, 9(2): 250-256 (in Chinese)
    [11] 国家环境保护局. 水和废水监测分析方法. 北京: 中国环境科学出版社, 2002. 244-246
    [12] 王小娟, 张兴堂, 蒋晓红, 等. β-FeOOH纳米线的自排列及形成机理研究. 高等学校化学学报, 2006, 27(3): 406-409 Wang X. J., Zhang X. T., Jiang X. H., et al. Studies on the self-arrangement of β-FeOOH nanowires and the formation mechanism. Chemical Journal of Chinese Universities, 2006, 27(3): 406-409(in Chinese)
    [13] Music S., Krehula S., Popovic S. Effect of HCl additions on forced hydrolysis of FeCl3 solutions. Materials Letters, 2004, 58(21): 2640-2645
    [14] 杨世东, 李玉玲, 王冬梅, 等. 负载羟基氧化铁改性滤料对苯酚吸附研究. 水处理技术, 2010, 36(6): 69-72 Yang S. D., Li Y. L., Wang D. M., et al. Adsorption of phenol on the filtration sands coated by ferric hydroxide. Technology of Water Treatment, 2010, 36(6): 69-72 (in Chinese)
    [15] 魏世勇, 杨小洪. 针铁矿-高岭石复合体的表面性质和吸附氟的特性. 环境科学, 2010, 31(9): 2134-2142 Wei S. Y., Yang X. H. Surface properties and adsorption characteristics for fluoride of goethite, kaolinite and their association. Environmental Science, 2010, 31(9): 2134-2142 (in Chinese)
    [16] Sugimoto T., Muramatsu A. Formation mechanism of monodispersed α-Fe2O3 particles in dilute FeCl3 solutions. Journal of Colloid and Interface Science, 1996, 184(2): 626-638
    [17] 陆敏博, 王世和. 富磷上清液铁接触除磷污泥性质与资源化利用. 环境工程学报, 2009, 3(9): 1592-1596 Lu M. B., Wang S. H. The characters and reuse of sludge from phosphorus removal by iron-contactor process for anaerobic phosphate-enriched supernatant. Chinese Journal of Environmental Engineering, 2009, 3(9): 1592-1596 (in Chinese)
    [18] Chitrakar R., Tezuka S., Sonoda A., et al. Selective adsorption of phosphate from seawater and wastewater by amorpous zirconium hydroxide amorphous zirconium hydroxide. Journal of Colloid and Interface Science, 2006, 297(2): 426-433
    [19] 杨敏, 豆小敏, 张昱. 固液界面吸附机制与模型. 环境科学学报, 2006, 26(10): 1581-1585 Yang M., Dou X. M., Zhang Y. Mechanism and models of adsorption process on solid/water interface. Acta Scientiae Circumstantiae, 2006, 26(10): 1581-1585 (in Chinese)
    [20] Karapinar N., Hoffmann E., Hahn H. Magnetite seeded precipitation of phosphate. Water Research, 2004, 38(13): 3059-3066
  • 加载中
计量
  • 文章访问数:  1821
  • HTML全文浏览数:  901
  • PDF下载数:  979
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-28
  • 刊出日期:  2014-01-27

用于磷吸附的载铁(β-FeOOH)沸石制备及特性

  • 1.  北京林业大学环境科学与工程学院, 北京 100083
  • 2.  国家林业局经济发展研究中心, 北京 100714
基金项目:

国家自然科学基金资助项目(51178047)

摘要: 以天然沸石为载体,采用FeCl3水解法制备用于磷吸附的载铁沸石(β-FeOOH-Z),优化β-FeOOH-Z的制备条件,包括FeCl3溶液浓度、负载pH值、负载时间、负载温度和烘干温度,并利用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对β-FeOOH-Z及其磷吸附特性进行分析。结果表明,β-FeOOH-Z的优化制备条件为:FeCl3溶液浓度1 mol/L、负载pH值6、负载时间24 h、负载温度25℃和烘干温度60℃。优化制备条件下,100~120目沸石的载铁量为100.2 mg/g,铁的负载率为18%,其磷吸附量为7.68 mg/g,比天然沸石提高79.6%。XRD分析结果表明,β-FeOOH-Z中的杂质元素较天然沸石减少,并有效负载β-FeOOH;制备条件对β-FeOOH-Z的成分有较大影响,FeCl3溶液浓度较低、负载温度和烘干温度过高均使β-FeOOH-Z中含有α-Fe2O3,并导致其磷吸附效率降低。FTIR分析结果表明,β-FeOOH-Z的表面羟基在其吸附磷过程中起重要作用,羟基与磷酸根离子的配位交换是β-FeOOH-Z吸附磷的主要作用机制。

English Abstract

参考文献 (20)

目录

/

返回文章
返回