基于白碳黑的水化硅酸钙制备及其磷回收特性

吉芳英, 关伟, 周卫威, 姜宁, 刘亭役, 陈宇, 程拥, 方德新. 基于白碳黑的水化硅酸钙制备及其磷回收特性[J]. 环境工程学报, 2014, 8(2): 493-498.
引用本文: 吉芳英, 关伟, 周卫威, 姜宁, 刘亭役, 陈宇, 程拥, 方德新. 基于白碳黑的水化硅酸钙制备及其磷回收特性[J]. 环境工程学报, 2014, 8(2): 493-498.
Ji Fangying, Guan Wei, Zhou Weiwei, Jiang Ning, Liu Tingyi, Chen Yu, Cheng Yong, Fang Dexin. Preparation and phosphorus recovery characteristic of calcium silicate hydrate based on white carbon black[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 493-498.
Citation: Ji Fangying, Guan Wei, Zhou Weiwei, Jiang Ning, Liu Tingyi, Chen Yu, Cheng Yong, Fang Dexin. Preparation and phosphorus recovery characteristic of calcium silicate hydrate based on white carbon black[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 493-498.

基于白碳黑的水化硅酸钙制备及其磷回收特性

  • 基金项目:

    国家“水体污染控制与治理”重大科技专项(2009ZX07315)

    重庆市重大科技专项(CSTC,2008AB7133)

  • 中图分类号: X703

Preparation and phosphorus recovery characteristic of calcium silicate hydrate based on white carbon black

  • Fund Project:
  • 摘要: 以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FTIR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6:1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。
  • 加载中
  • [1] Suzkui K., Tanaka Y., Kuioda K., et al. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresource Technology, 2007, 98(8): 1573-1578
    [2] Eung-Ho K., Soo-Bin Y., Ho-Chan J., et al., Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material, Journal of Hazardous Materials B, 2006, 136(3): 690-697
    [3] Song Y. H., Dietfried D., Ute B., et al. Seed selections for crystallization of calcium phosphate for phosphorus recovery. Journal of Environmental Sciences, 2007, 19(5): 591-595
    [4] Chen X. C., Kong H. N., Wu D. Y., et al. Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal. Journal of Environmental Sciences, 2009, 21(5): 575-580
    [5] Battistoni P., Dangelis A., Pavan P., et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization. Water Research, 2001, 35(9): 2167-2178
    [6] Elisabeth V., Munch, Keith B. Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Research, 2001, 35 (1): 151-159
    [7] Sukalyan S., Arka P., Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 2011, 45(11): 3318-3330
    [8] Cristian B., Daniel M., Florent C., et al. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 2012, 46(7): 2376-2384
    [9] Hoon J., Seon-Hong K. Phosphorus removal using cow bone in hydroxyapatite crystallization. Water Research, 2002, 36 (5): 1324-1330
    [10] Barat R., Montoya T. Seco A., et al. Modeling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems. Water Research, 2011, 45(12): 3744-3752
    [11] Kohei U., Hirotaka T., Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 1. Preparation method and adsorption capability of a new adsorbent. Industrial & Engineering Chemistry Research, 1991, 30 (8): 1893-1896
    [12] Melike S., Kadir O. A., Sahin G. M. Investigation of the changes of P2O5 content of phosphate rock during simultaneous calcination/sulfation. Powder Technology, 2011, 211(1): 72-76
    [13] Song Y. H., Weidler P. G., Berg U., et al. Calcite-seed crystallization of calcium phosphate for phosphorus recovery. Chemosphere, 2006, 63(2): 236-243
    [14] Zhou J. Z., Feng L. L., Zhao J., et al. Efficient and controllable phosphate removal on hydrocalumite by multi-step treatment based on pH-dependent precipitation. Chemical Engineering Journal, 2012, 185-186(3): 219-225
    [15] Battistoni P., Struvite P. P., Crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Research, 2000, 34 (11): 3033-3041
    [16] Liu Y., Sheng X., Dong Y. H, et al. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination, 2012, 289(15): 66-71
    [17] Richardson I.G. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement and Concrete Research, 2004, 34 (9): 1733-1777
    [18] 侯云芬.水热合成C-S-H凝胶所用硅质原料的特性研究.硅酸盐学报, 2000, 28(2): 111-122 Hou Yunfen. Study on characteristics of siliceous materials used in the synthesis of C-S-H gel. Journal of the Chinese Ceramic Society, 2000, 28(2): 111-122 (in Chinese)
    [19] Guan W., Ji F. Y., Chen Q. K., et al. Preparation and phosphorus recovery performance of porous calcium-silicate-hydrate. Ceramics International, 2013, 39 (2):1385-1391
    [20] 施尔畏, 陈之战, 元如林, 等. 水热结晶学. 北京:科学出版社, 2004
    [21] 张文生, 叶家元, 王妍萍, 等. 掺杂有机大分子水化硅酸钙的孔结构及表面分形特征. 硅酸盐学报, 2006, 34(12): 1497-1502 (in Chinese) Zhang W. S., Ye J. Y., Wang Y. P., et al. Pore structure and surface fractal characteristics of calcium silicate hydrates contained organic macromolecule. Journal of the Chinese Ceramic Society, 2006, 34 (12): 1497-1502 (in Chinese)
    [22] Nizamettin D., Asim K., Dissolution kinetics of ulexite in perchloric acid solutions. International Journal of Mineral Processing, 2007, 83(1): 76-80
  • 加载中
计量
  • 文章访问数:  1633
  • HTML全文浏览数:  948
  • PDF下载数:  862
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-23
  • 刊出日期:  2014-01-27

基于白碳黑的水化硅酸钙制备及其磷回收特性

  • 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
基金项目:

国家“水体污染控制与治理”重大科技专项(2009ZX07315)

重庆市重大科技专项(CSTC,2008AB7133)

摘要: 以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FTIR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6:1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。

English Abstract

参考文献 (22)

目录

/

返回文章
返回