吸附-电化学氧化耦合处理对氯苯酚废水及动力学

李媚, 王克之, 李雪莲, 吴彩金, 潘国敬, 王双飞. 吸附-电化学氧化耦合处理对氯苯酚废水及动力学[J]. 环境工程学报, 2013, 7(9): 3427-3432.
引用本文: 李媚, 王克之, 李雪莲, 吴彩金, 潘国敬, 王双飞. 吸附-电化学氧化耦合处理对氯苯酚废水及动力学[J]. 环境工程学报, 2013, 7(9): 3427-3432.
Li Mei, Wang Kezhi, Li Xuelian, Wu Caijin, Pan Guojing, Wang Shuangfei. Treatment and kinetics of p-chlorophenol wastewater by coupling electrochemical oxidation and adsorption[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3427-3432.
Citation: Li Mei, Wang Kezhi, Li Xuelian, Wu Caijin, Pan Guojing, Wang Shuangfei. Treatment and kinetics of p-chlorophenol wastewater by coupling electrochemical oxidation and adsorption[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3427-3432.

吸附-电化学氧化耦合处理对氯苯酚废水及动力学

  • 基金项目:

    广西科学研究与技术开发计划项目(桂科能0992028-13)

    广西高校人才小高地建设创新团队项目(桂教人[2011]47)

    广西科学基金项目(桂科自0728055)

  • 中图分类号: X703.1

Treatment and kinetics of p-chlorophenol wastewater by coupling electrochemical oxidation and adsorption

  • Fund Project:
  • 摘要: 以毡状活性炭纤维为阳极,不锈钢为阴极,吸附-电化学氧化耦合降解对氯苯酚废水进行了研究。考察了吸附或耦合电化学氧化过程、电流密度、支持电解质硫酸钠浓度和活性炭纤维重复使用对废水COD去除率的影响,结果表明,采用吸附-电化学氧化耦合方法,当电流密度7.6 mA/cm2 支持电解质(硫酸钠)浓度为1 g/L,处理时间为180 min,4-CP废水COD去除率可达97.09%。毡状活性炭纤维对4-CP的静态吸附过程符合Langmiu吸附等温方程。建立了吸附-电化学氧化COD去除动力学模型,动力学模型参数表明, 对于COD的去除,电化学氧化作用比吸附作用大。
  • 加载中
  • [1] Sofia A.C. Lima, M.Filomena J. Raposo, Paula M.L., et al. Biodegradation of p-chlorophenol by a microalgae consortium.Water Research, 2004, 38(1):97-102
    [2] Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Sci.Total Environ., 2004,322(1-3):21-39
    [3] Dabo D.,Cyr A.,Laplante F.,et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environmental Science & Technology,2000,34(7):1265-1268
    [4] Ayse Kuleyin. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 2007,144(1-2):307-315
    [5] Fikret Kargi, Serkan Eker. Toxicity and batch biodegradation kinetics of 2,4 dichlorophenol by pure pseudomonas putida culture. Enzyme and Microbial Technology,2004,35(5-6): 424-428
    [6] F.Kargi,S.Eker.Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biolm reactor. Process Biochemistry,2005,40(6):2105-2111
    [7] Jun Shan,Jun Xu,Zhou Wenqiang,et al. Enhancement of chlorophenol sorption on soil by geophagous earthworms (Metaphire guillelmi). Chemosphere,2011,82(2):156-162
    [8] Jung M.W.,Ahn K.H.,Lee Y., et al. Adsorption characteristics of phenol and chlorophenols on granular activated carbons(GAC). Microchem. J.,2001,70 (2): 123-131
    [9] Akhtar M.,Bhanger M.I.,Iqbal S., et al.Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: Kinetic and thermodynamic investigations. Journal of Hazardous Materials, 2006,128(1):44-52
    [10] Yan F.,Urmila M.D. Cost effective environmental control technology for utilities,J.Adv. Environ.Res.,2004,8(2):173-196
    [11] Akn Karci,Idil Arslan-Alaton,Tugba Olmez-Hanci, et al. Transformation of 2,4-dichloro-phenol by H2O2/UV-C,Fenton and photo-Fenton oxidation products and toxicity evolution processes.Journal of Photochemistry and Photobiology A: Chemistry,2012, 230(1):65-73
    [12] Jingjing Li,Yang Hu,Wenhui Liu,et al.Efficient oxidative degradation of 2-chlorophenol and 4-chlorophenol over supported CuO-based catalysts.Journal of Natural Gas Chemistry,2011,20(5):493-497
    [13] 周剑,丁燕燕.电化学氧化法处理酸性染料废水的试验研究.工业用水与废水, 2011,42(6):37-39 Zhou J.,Ding Y.Y.Experimental study on acid dye wastewater treatment by electro-chemical oxidation. Industrial Water &Wastewater,2011,42(6):37-39(in Chinese)
    [14] Zhou M H,He J J.Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode. Journal of Hazardous Materials,2008,153(1-2):357-36
    [15] Yang J.,Jia J. P.,Liao J.,et al.Removal of fulvic acid from water electrochemically using active carbon fiber electrode. Water Research,2004,38(20):4353-4360
    [16] Tsai Jiunhorng,Chiang Hsiumei,Huang Guanyinag,et al.Adsorption characterristics of acetone,chloroform and acetonitrile on sludgederived adsorbent,commercial granular activeted carbon and activated carbon fibers. Journal of Hazardous Materials, 2008, 154(1-3):1183-1191
    [17] Shen Z. M., Wang W. H., Jia J. P., et al.Degradation of dye solution by an activated carbon fiber electrode electrolysis system. Journal of Hazardous Materials, 2001, 84(1):107-116
    [18] 马淳安.有机电化学合成导论.北京:科学出版社,2002.161
    [19] Mathialagan T.,Viraraghavan T. Adsorption of cadmium from aqueous solution by perlie.Journal of hazardous malterials,2002,94(3):291-303
  • 加载中
计量
  • 文章访问数:  1692
  • HTML全文浏览数:  800
  • PDF下载数:  971
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-17
  • 刊出日期:  2013-09-15

吸附-电化学氧化耦合处理对氯苯酚废水及动力学

  • 1.  广西大学化学化工学院, 南宁 530004
  • 2.  广西民族大学化学化工学院, 化学与生物转化过程新技术广西高校重点实验室, 南宁 530006
基金项目:

广西科学研究与技术开发计划项目(桂科能0992028-13)

广西高校人才小高地建设创新团队项目(桂教人[2011]47)

广西科学基金项目(桂科自0728055)

摘要: 以毡状活性炭纤维为阳极,不锈钢为阴极,吸附-电化学氧化耦合降解对氯苯酚废水进行了研究。考察了吸附或耦合电化学氧化过程、电流密度、支持电解质硫酸钠浓度和活性炭纤维重复使用对废水COD去除率的影响,结果表明,采用吸附-电化学氧化耦合方法,当电流密度7.6 mA/cm2 支持电解质(硫酸钠)浓度为1 g/L,处理时间为180 min,4-CP废水COD去除率可达97.09%。毡状活性炭纤维对4-CP的静态吸附过程符合Langmiu吸附等温方程。建立了吸附-电化学氧化COD去除动力学模型,动力学模型参数表明, 对于COD的去除,电化学氧化作用比吸附作用大。

English Abstract

参考文献 (19)

目录

/

返回文章
返回