生物填料地下渗滤系统对生活污水的脱氮

李英华, 李海波, 王鑫, 王洪, 徐新阳, 胡筱敏, 孙铁珩. 生物填料地下渗滤系统对生活污水的脱氮[J]. 环境工程学报, 2013, 7(9): 3369-3374.
引用本文: 李英华, 李海波, 王鑫, 王洪, 徐新阳, 胡筱敏, 孙铁珩. 生物填料地下渗滤系统对生活污水的脱氮[J]. 环境工程学报, 2013, 7(9): 3369-3374.
Li Yinghua, Li Haibo, Wang Xin, Wang Hong, Xu Xinyang, Hu Xiaomin, Sun Tieheng. Nitrogen removal in domestic sewage by bio-substrate based subsurface wastewater infiltration system[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3369-3374.
Citation: Li Yinghua, Li Haibo, Wang Xin, Wang Hong, Xu Xinyang, Hu Xiaomin, Sun Tieheng. Nitrogen removal in domestic sewage by bio-substrate based subsurface wastewater infiltration system[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3369-3374.

生物填料地下渗滤系统对生活污水的脱氮

  • 基金项目:

    国家自然科学基金资助项目(51108275)

    教育部新世纪人才计划项目(NCET-11-1-12)

    辽宁省高校优秀人才计划项目(LR201028)

    辽宁省高校优秀青年学者成长计划项目(LJQ2012101)

    "十一五"国家科技支撑计划项目(2011BAJ06B02)

  • 中图分类号: X703.1

Nitrogen removal in domestic sewage by bio-substrate based subsurface wastewater infiltration system

  • Fund Project:
  • 摘要: 将草甸棕壤、炉渣和活性污泥等基质按体积比13:6:1配制生物填料,研究了生物填料地下渗滤系统(subsurface wastewater infiltration system, SWIS)在不同的水力负荷和污染负荷条件下对校园生活污水的脱氮效果。场地实验结果表明,当BOD5负荷为12.0 g BOD5/(m2·d),表面水力负荷为0.04~0.10 m3/(m2·d)时,SWIS对NH4+-N和TN的平均去除率分别为92.4%和82.0%。当水力负荷为0.08 m3/(m2·d),BOD5负荷9.3~16.8 g BOD5/(m2·d)时,SWIS对NH4+-N和TN的平均去除率为92.7%和81.2%。SWIS中氧化还原电位(oxygen reduction potential, ORP)随进水水力负荷和BOD5负荷的增加而降低,脱氮效率下降。综合出水水质和处理效率,适宜的水力负荷和污染负荷分别为0.065 m3/(m2·d)和12.0 g BOD5/(m2·d)。在此条件下,SWIS的启动周期为25~30 d。出水水质均优于《城市污水再生利用-景观环境用水水质》(GB/T18921-2002)标准,且处理效果稳定,抗负荷冲击能力强。
  • 加载中
  • [1] 孙铁珩, 李宪法. 城市污水自然生态处理与资源化利用技术. 北京: 化学工业出版社, 2006. 71-73
    [2] Stephanie L. L., JAY F. M. Use of an ecological treatment system (ETS) for removal of nutrients from dairy wastewater. Ecological Engineering, 2006, 28(3): 235-245
    [3] 张建, 黄霞, 施汉昌, 等. 掺加草炭的地下渗滤系统处理生活污水. 中国给水排水, 2004, 20(6): 41-43
    [4] 潘晶, 张阳, 孙铁珩, 等. 地下渗滤基质中微生物空间分布与污水净化效果. 中国环境科学, 2008, 28(7): 656-660 Pan J., Zhang Y., Sun T. H., et al. Spatial distribution of microorganisms in subsurface wastewater infiltration and their correlation with purification of wastewater. China Environmental Science, 2008, 28(7): 656-660 (in Chinese)
    [5] 闫亚男, 张列宇, 席北斗, 等. 改良化粪池/地下土壤渗滤系统处理农村生活污水. 中国给水排水, 2011, 27(10): 69-72 Yan Y. N., Zhang L. Y., Xi B. D., et al. Treatment of rural domestic sewage by modified septic tanks/subsurface soil infiltration system. China Water & Wastewater, 2011, 27(10): 69-72 (in Chinese)
    [6] Li Y. H., Li H. B., Pan J., et al. Performance evaluation of subsurface wastewater infiltration system in treating domestic sewage. Water Science and Technology, 2012, 65(4): 713-720
    [7] 党振华, 王成端, 羊裔恒, 等. 无砾石微孔管地下渗滤系统处理生活污水的中试研究. 环境工程学报, 2012, 6(3): 922-926 Dang Z. H., Wang C. R., Yang Y. H., et al. Pilot-scale study on treatment of domestic sewage by gravel-less perforated pipe leach fields system. Chinese Journal of Environmental Engineering, 2012, 6(3): 922-926 (in Chinese)
    [8] Lloréns M., Pérez-Marín A. B., Aguilar M. I., et al. Nitrogen transformation in two subsurface infiltration systems at pilot scale. Ecological Engineering, 2011, 37(5): 736-743
    [9] Zhang J., Huang X., Liu C. X., et al. Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system. Ecological Engineering, 2005, 25(4): 419-428
    [10] 国家环境保护总局. 水和废水监测分析方法 (第4版).北京: 中国环境科学出版社, 2002
    [11] 南京土壤研究所. 土壤农化分析方法. 北京: 中国农业科学出版社, 1999
    [12] Zhang L. B., Xing M. Y., Wu Y. F., et al. Spatial distributions of biofilm properties and flow pattern in NiiMi process. Bioresource Technology, 2011, 102(2): 1406-1414
    [13] Lowe K. S., Siegrist R. L. Controlled field experiment for performance evaluation of septic tank effluent treatment during soil infiltration. Journal of Environmental Engineering, 2011, 134(2): 93-101
    [14] Li Y. H., Li H. B., Wang X., et al. Changes in microbial populations and enzyme activities during nitrogen biodegradation of domestic swage treatment in the subsurface wastewater infiltration system (SWIS). Bulletin of Environment Contamination and Toxicology, 2011, 87(4): 431-435
    [15] Elise B., Simon T., Bradley P., et al. Managed aquifer recharge of treated wastewater: Water quality changes resulting from infiltration through the vadose zone. Water Research, 2011, 45(17): 5764-5772
    [16] Alma C., Catalina M., Richard G., et al. The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico. Environmental Pollution, 2011, 159(5): 1354-1362
    [17] U. S. Environmental Protection Agency. Onsite Wastewater Treatment Systems Manual. Washington, D.C.: Office of Water Office of Research and Development, U.S. Environmental Protection Agency, 2002
    [18] 郑彦强, 卢会霞, 许伟, 等. 地下渗滤系统处理农村生活污水的研究. 环境工程学报, 2010, 4(10): 2235-2238 Zheng Y. Q., Lu H. X., Xu W., et al. Study on rural sewage treatment by subsurface infiltration system. Chinese Journal of Environmental Engineering, 2010, 4(10): 2235-2238 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1568
  • HTML全文浏览数:  665
  • PDF下载数:  986
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-06-12
  • 刊出日期:  2013-09-15

生物填料地下渗滤系统对生活污水的脱氮

  • 1.  沈阳大学区域污染环境生态修复教育部重点实验室, 沈阳 110044
  • 2.  东北大学资源与土木工程学院, 沈阳 110016
基金项目:

国家自然科学基金资助项目(51108275)

教育部新世纪人才计划项目(NCET-11-1-12)

辽宁省高校优秀人才计划项目(LR201028)

辽宁省高校优秀青年学者成长计划项目(LJQ2012101)

"十一五"国家科技支撑计划项目(2011BAJ06B02)

摘要: 将草甸棕壤、炉渣和活性污泥等基质按体积比13:6:1配制生物填料,研究了生物填料地下渗滤系统(subsurface wastewater infiltration system, SWIS)在不同的水力负荷和污染负荷条件下对校园生活污水的脱氮效果。场地实验结果表明,当BOD5负荷为12.0 g BOD5/(m2·d),表面水力负荷为0.04~0.10 m3/(m2·d)时,SWIS对NH4+-N和TN的平均去除率分别为92.4%和82.0%。当水力负荷为0.08 m3/(m2·d),BOD5负荷9.3~16.8 g BOD5/(m2·d)时,SWIS对NH4+-N和TN的平均去除率为92.7%和81.2%。SWIS中氧化还原电位(oxygen reduction potential, ORP)随进水水力负荷和BOD5负荷的增加而降低,脱氮效率下降。综合出水水质和处理效率,适宜的水力负荷和污染负荷分别为0.065 m3/(m2·d)和12.0 g BOD5/(m2·d)。在此条件下,SWIS的启动周期为25~30 d。出水水质均优于《城市污水再生利用-景观环境用水水质》(GB/T18921-2002)标准,且处理效果稳定,抗负荷冲击能力强。

English Abstract

参考文献 (18)

目录

/

返回文章
返回