青萍生长特征及其对受污染河水的修复效果

鲁言言, 黄磊, 刘明, 杜刚, 高旭. 青萍生长特征及其对受污染河水的修复效果[J]. 环境工程学报, 2013, 7(9): 3339-3344.
引用本文: 鲁言言, 黄磊, 刘明, 杜刚, 高旭. 青萍生长特征及其对受污染河水的修复效果[J]. 环境工程学报, 2013, 7(9): 3339-3344.
Lu Yanyan, Huang Lei, Liu Ming, Du Gang, Gao Xu. Growth characteristics and purification efficiencies of Lemna minor to polluted river water[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3339-3344.
Citation: Lu Yanyan, Huang Lei, Liu Ming, Du Gang, Gao Xu. Growth characteristics and purification efficiencies of Lemna minor to polluted river water[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3339-3344.

青萍生长特征及其对受污染河水的修复效果

  • 基金项目:

    "十二五"国家科技支撑计划项目(2012BAJ25B09)

  • 中图分类号: X522

Growth characteristics and purification efficiencies of Lemna minor to polluted river water

  • Fund Project:
  • 摘要: 以浮萍优势品种青萍(Lemna minor)为研究对象,开展受污染河水修复。分析了青萍在不同营养盐浓度条件下的生长特征,探讨了青萍对受污染河水的修复效果。在表面积为0.0095 m2的限制空间条件下,青萍在1、2和5 mg总氮(TN)/L营养液中的生长特征都能较好地服从Logistic生长模型,受制约的临界鲜重(FW)分别为1.20、1.36和1.36 g;青萍对受污染河水中氮磷污染物具有较好的去除效果,氨氮(NH4+-N)的平均去除率、平均去除量和平均去除速率分别为56.87%、1.22 mg/d和0.0466 mg/(g FW·h),正磷酸盐(PO43--P)的平均去除率、平均去除量和平均去除速率分别为66.95%、0.25 mg/d和0.0088 mg/(g FW·h)。根据相关性分析,进水NH4+-N和PO43--P浓度与其对应去除量之间极显著相关;青萍FW与NH4+-N去除速率之间显著负相关,但与PO43--P去除速率之间不存在显著相关性;NH4+-N进水浓度与去除速率相关性不显著,但PO43--P进水浓度与去除速率显著正相关。
  • 加载中
  • [1] 骆其金, 谌建宇, 许振成, 等. 曝气生态浮床/PRB组合工艺净化重污染河水研究. 中国给水排水, 2009, 25(23): 22-28 Luo Qijin, Chen Jianyu, Xu Zhencheng, et al. Purification of heavy polluted riverw ater by combined EAFB-PRB process. China Water & Wastewater, 2009, 25(23): 22-28(in Chinese)
    [2] Bergmann B. A., Cheng J., Classen J., et al. Nutrient removal from swine lagoon effluent by duckweed. Transactions of the American Society of Agricultural Engineers, 2000, 43(2): 263-269
    [3] Cheng J., Bergmann B. A., Classen J. J., et al. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 2002, 81(1): 81-85
    [4] Van Der Steen P., Brenner A., Van Buuren J., et al. Post-treatment of UASB reactor effluent in an integrated duckweed and stabilization pond system. Water Research, 1999, 33(3): 615-620
    [5] Al-Nozaily F. A., Alaerts G. Performance of duckweed-covered sewage lagoons in Sana'a, Yemen, depending on sewage strength. Journal of Water Supply: Research and Technology-AQUA, 2002, 51(3): 173-182
    [6] Awuah E., Lubberding H. J., Asante K., et al. The effect of pH on enterococci removal in Pistia-, duckweed-and algae-based stabilization ponds for domestic wastewater treatment. Water Science and Technology, 2002, 45(1): 67-74
    [7] El-Shafai S. A., El-Gohary F. A., Nasr F. A., et al. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresource Technology, 2007, 98(4): 798-807
    [8] Short M. D., Cromar N. J., Nixon J. B., et al. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: A pilot study. Water Science and Technology, 2007, 55(11): 111-119
    [9] Van Der Steen N. P., Nakiboneka P., Mangalika L., et al. Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds. Water Science and Technology, 2003, 48(2): 341-348
    [10] Edwards P., Hassan M. S., Chao C. H., et al. Cultivation of duckweeds in septage-loaded earthen ponds. Bioresource Technology, 1992, 40(2): 109-117
    [11] Yamaga F., Washio K., Morikawa M. Sustainable Biodegradation of Phenol by Acinetobacter calcoaceticus P23 Isolated from the Rhizosphere of Duckweed Lemna aoukikusa. Environmental Science & Technology, 2010, 44(16): 6470-6474
    [12] Toyama T., Sei K., Yu N., et al. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: A mechanism of accelerated biodegradation of phenol. Water Research, 2009, 43(15): 3765-3776
    [13] Sasmaz A., Obek E. The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecological Engineering, 2009, 35(10): 1564-1567
    [14] Khellaf N., Zerdaoui M. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 2009, 100(23): 6137-6140
    [15] Cheng J., Landesman L., Bergmann B. A., et al. Nutrient removal from swine lagoon liquid by Lemna minor 8627. Transactions of the Asae, 2002, 45(4): 1003-1010
    [16] Hammouda O., Gaber A., Abdel-Hameed M. S. Assessment of the effectiveness of treatment of wastewater-contaminated aquatic systems with Lemna gibba. Enzyme and Microbial Technology, 1995, 17(4): 317-323
    [17] Ran N., Agami M., Oron G. A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Research, 2004, 38(9): 2241-2248
    [18] Sutton D. L., Harold Ornes W. Growth of Spirodela polyrhiza in static sewage effluent. Aquatic Botany, 1977, 3: 231-237
    [19] Sutton D. L., Ornes W. H. Phosphorus removal from static sewage effluent using duckweed. J. Environ. Qual., 1974, 4(3): 367-370
    [20] Frederic M., Samir L., Louise M., et al. Comprehensive modeling of mat density effect on duckweed (Lemna minor) growth under controlled eutrophication. Water Research, 2006, 40(15): 2901-2910
    [21] Tkalec M., Vidakovic-Cifrek Z., Regula I. The effect of oil industry "high density brines" on duckweed Lemna minor L. Chemosphere, 1998, 37(13): 2703-2715
    [22] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999
    [23] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [24] Reinhold D. M., Saunders E. M. Phytoremediation of fluorinated agrochemicals by duckweed. Transactions of the Asabe, 2006, 49(6): 2077-2083
    [25] 种云霄, 胡洪营, 钱易. 细脉浮萍和紫背浮萍在污水营养条件下的生长特性. 环境科学, 2004, 25(6): 59-64 Chong Yunxiao, Hu Hongying, Qian Yi. Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhizain in medium with nutrient character of wastewater. Environmental Science, 2004, 25(6): 59-64(in Chinese)
    [26] Xu J., Shen G. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technology, 2011, 102(2): 848-853
    [27] Suppadit T. Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza. Bioresource Technology, 2011, 102(16): 7388-7392
    [28] 黄辉, 刘杰, 赵浩, 等. 浮萍放养体系对污水氮磷的净化效果. 农业环境科学学报, 2007, 26(增刊): 242-245 Huang Hui, Liu Jie, Zhao Hao, et al. Removal of nitrogen and phosphorus by duckweed-cultured system. Journal of Agro-Environment Science, 2007, 26(Supplement): 242-245(in Chinese)
    [29] Porath D., Pollock J. Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquatic Botany, 1982, 13: 125-131
  • 加载中
计量
  • 文章访问数:  1713
  • HTML全文浏览数:  944
  • PDF下载数:  1035
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-06-15
  • 刊出日期:  2013-09-15

青萍生长特征及其对受污染河水的修复效果

  • 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
基金项目:

"十二五"国家科技支撑计划项目(2012BAJ25B09)

摘要: 以浮萍优势品种青萍(Lemna minor)为研究对象,开展受污染河水修复。分析了青萍在不同营养盐浓度条件下的生长特征,探讨了青萍对受污染河水的修复效果。在表面积为0.0095 m2的限制空间条件下,青萍在1、2和5 mg总氮(TN)/L营养液中的生长特征都能较好地服从Logistic生长模型,受制约的临界鲜重(FW)分别为1.20、1.36和1.36 g;青萍对受污染河水中氮磷污染物具有较好的去除效果,氨氮(NH4+-N)的平均去除率、平均去除量和平均去除速率分别为56.87%、1.22 mg/d和0.0466 mg/(g FW·h),正磷酸盐(PO43--P)的平均去除率、平均去除量和平均去除速率分别为66.95%、0.25 mg/d和0.0088 mg/(g FW·h)。根据相关性分析,进水NH4+-N和PO43--P浓度与其对应去除量之间极显著相关;青萍FW与NH4+-N去除速率之间显著负相关,但与PO43--P去除速率之间不存在显著相关性;NH4+-N进水浓度与去除速率相关性不显著,但PO43--P进水浓度与去除速率显著正相关。

English Abstract

参考文献 (29)

目录

/

返回文章
返回