活性炭辅助微波活化煤矸石的“枣糕”模型

连明磊, 李志, 霍霞, 孔德顺. 活性炭辅助微波活化煤矸石的“枣糕”模型[J]. 环境工程学报, 2013, 7(6): 2378-2382.
引用本文: 连明磊, 李志, 霍霞, 孔德顺. 活性炭辅助微波活化煤矸石的“枣糕”模型[J]. 环境工程学报, 2013, 7(6): 2378-2382.
Lian Minglei, Li Zhi, Huo Xia, Kong Deshun. Jujube cake model of activated carbon assisted microwave activating coal gangue[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2378-2382.
Citation: Lian Minglei, Li Zhi, Huo Xia, Kong Deshun. Jujube cake model of activated carbon assisted microwave activating coal gangue[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2378-2382.

活性炭辅助微波活化煤矸石的“枣糕”模型

  • 基金项目:

    六盘水市科技计划项目资助(52020-2011-05)

    贵州省煤炭资源清洁高效利用科研实验平台项目资助(黔科平台[2011]4003)

    贵州省教育厅特色重点实验室项目资助([2011]278)

  • 中图分类号: X784

Jujube cake model of activated carbon assisted microwave activating coal gangue

  • Fund Project:
  • 摘要: 采用活性炭辅助微波活化煤矸石,将煤矸石的活化时间由传统高温焙烧方法的2 h缩短到了24 min以内。将70目活性炭与200目煤矸粉以2.0:1的质量配比充分混合后在800 W微波功率下活化24 min,铝铁浸出率可达750℃焙烧2 h的1.71倍。将微波看做实体物质,将活化过程看做是由活性炭向煤矸粉的单向微波能量传递,引入化学反应工程学方法,"枣糕"模型计算表明,在680 W功率下,活性炭的微波附着速率常数ka=0.334 min-1,微波脱附速率常数k'a=0.050min-1,煤矸粉的微波附着速率常数kb=0.262 min-1,相关系数R=0.99997 。在528、680、800 W 3个功率水平下,"枣糕"模型的计算值均与实验值拟合良好,相关系数均高于0.999,在以上3功率下,发现极限铝铁相对浸出率a与极限温升ΔTmax近似成正比。
  • 加载中
  • [1] 赵银,李俊梅.煤矸石活化及酸浸取过程的研究.太原理工大学学报,1993,24(1):86-87 Zhao Yin, Li Junmei. A study on the calcining activation of gangue and extraction of Al2O3 with hydrochloride acid. Journal of Taiyuan University of Technology, 1993,24(1):86-87(in Chinese)
    [2] 刘小波,傅勇坚.煤矸石-石灰石-纯碱烧结过程研究.环境科学学报,1999,19(2):210-213 Liu Xiaobo, Fu Yongjian. Sintering process of coal refuse lime stone soda ash. Acta Scientiae Cucumstantiae, 1999,19(2):210-213(in Chinese)
    [3] 吕文英.煤矸石中Al2O3的提取与测定.环境工程,1995,13(2):48-50 Lü Wenying. Extraction and assay of Al2O3 from coal gangue. Environmental Engineering, 1995,13(2):48-50(in Chinese)
    [4] 肖曾利,秦文龙.煤矸石制备聚合硅酸铝铁(PFASS)絮凝剂处理石油污水的试验研究.石油天然气学报,2009,31(5):158-160 Xiao Zengli, Qin Wenlong. Experimental study on PFASS produced from gangue and its effect on oilfield sewage. Journal of Oil and Gas Technology, 2009,31(5):158-160(in Chinese)
    [5] 马艳然,于伯蕖,鲁秀国.从煤矸石中制备聚合氯化铝及应用研究.化学世界,2004,(2):63-65 Ma Yanran,Yu Boqu,Lu Xiuguo. Study on the preparation of polyaluminum chloride from coal gangue. Chemistry World, 2004,(2):63-65(in Chinese)
    [6] 连明磊,冯权莉,宁平,等.载乙醇活性炭在氮气氛围中微波解吸.化学工程,2011,39(1):10-13 Lian Minglei, Feng Quanli, Ning Ping,et al. Desorption of ethanol-loaded activated carbon by microwave irradiation in N2 condition. Chemical Engineering, 2011,39(1):10-13(in Chinese)
    [7] 崔慧军,陈津,刘金营.微波场中含碳铬铁矿粉反应过程升温特性数值模拟.钢铁研究学报,2007,19(11):5-9 Cui Huijun, Chen Jin, Liu Jinying. Numerical modeling of temperature rise characteristic curve in reaction process for carbon-containing chromite fines in microwave field. Journal of Iron and Steel Research, 2007,19(11):5-9(in Chinese)
    [8] Gabriel C., Gabriel S., Brant E. H., et al. Dielectric parameters relevant to microwave dielectric heating. Chemical Society Review,1998,27(4):217-223
    [9] Hill J. M., Marchant T. R. Modeling microwave heating. Applied Mathematical Modeling,1996,20(1):3-15
    [10] Reimbert C. G., Minzoni A. A., Smyth N. F. Effect of radiation losses on hotspot formation and propagation in microwave heating. IMA Journal of Applied Mathematics, 1996,57(2):165-179
    [11] 夏祖学, 刘长军, 闫丽, 等. 微波化学的应用研究进展.化学研究与应用, 2004,16(4):441-444 Xia Zuxue,Liu Changjun, Yan Li, et al. Progress in microwave chemistry research and applications. Chemical Research and Application, 2004,16(4):441-444(in Chinese)
    [12] Thostenson E. T., Chou T. W. Microwave processing: Fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 1999,30(9):1055-1071
    [13] Gao B. Y., Yue Q. Y., Wang B. J. The Chemical species distribution and transformation of polyaluminum silicate chloride coagulant. Chemosphere, 2002,46(5):809-813
    [14] 郭锴,唐小恒,周绪美,等.化学反应工程.北京:化学工业出版社,2010.107-124
  • 加载中
计量
  • 文章访问数:  2120
  • HTML全文浏览数:  1132
  • PDF下载数:  1240
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-04
  • 刊出日期:  2013-06-11
连明磊, 李志, 霍霞, 孔德顺. 活性炭辅助微波活化煤矸石的“枣糕”模型[J]. 环境工程学报, 2013, 7(6): 2378-2382.
引用本文: 连明磊, 李志, 霍霞, 孔德顺. 活性炭辅助微波活化煤矸石的“枣糕”模型[J]. 环境工程学报, 2013, 7(6): 2378-2382.
Lian Minglei, Li Zhi, Huo Xia, Kong Deshun. Jujube cake model of activated carbon assisted microwave activating coal gangue[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2378-2382.
Citation: Lian Minglei, Li Zhi, Huo Xia, Kong Deshun. Jujube cake model of activated carbon assisted microwave activating coal gangue[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2378-2382.

活性炭辅助微波活化煤矸石的“枣糕”模型

  • 1. 六盘水师范学院化学与化学工程系, 六盘水 553004
  • 2. 六盘水市钟山区环保局, 六盘水 553004
基金项目:

六盘水市科技计划项目资助(52020-2011-05)

贵州省煤炭资源清洁高效利用科研实验平台项目资助(黔科平台[2011]4003)

贵州省教育厅特色重点实验室项目资助([2011]278)

摘要: 采用活性炭辅助微波活化煤矸石,将煤矸石的活化时间由传统高温焙烧方法的2 h缩短到了24 min以内。将70目活性炭与200目煤矸粉以2.0:1的质量配比充分混合后在800 W微波功率下活化24 min,铝铁浸出率可达750℃焙烧2 h的1.71倍。将微波看做实体物质,将活化过程看做是由活性炭向煤矸粉的单向微波能量传递,引入化学反应工程学方法,"枣糕"模型计算表明,在680 W功率下,活性炭的微波附着速率常数ka=0.334 min-1,微波脱附速率常数k'a=0.050min-1,煤矸粉的微波附着速率常数kb=0.262 min-1,相关系数R=0.99997 。在528、680、800 W 3个功率水平下,"枣糕"模型的计算值均与实验值拟合良好,相关系数均高于0.999,在以上3功率下,发现极限铝铁相对浸出率a与极限温升ΔTmax近似成正比。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回