Processing math: 100%

浊度仪法快速测定水体中硫酸盐含量

薛秀玲, 李孟迪. 浊度仪法快速测定水体中硫酸盐含量[J]. 环境工程学报, 2013, 7(4): 1359-1362.
引用本文: 薛秀玲, 李孟迪. 浊度仪法快速测定水体中硫酸盐含量[J]. 环境工程学报, 2013, 7(4): 1359-1362.
Xue Xiuling, Li Mengdi. Rapid determination of sulfate in water by turbidimetry[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1359-1362.
Citation: Xue Xiuling, Li Mengdi. Rapid determination of sulfate in water by turbidimetry[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1359-1362.

浊度仪法快速测定水体中硫酸盐含量

  • 基金项目:

    福建省厦门市科技计划项目(3502Z20103034)

    中央高校基本科研业务费专项资金资助(JB-ZR1114)

  • 中图分类号: X132

Rapid determination of sulfate in water by turbidimetry

  • Fund Project:
  • 摘要: 为了适应野外水质快速测定的要求,根据硫酸钡比浊法的方法原理,采用浊度仪测定浊度的方法,建立了水体中硫酸盐含量的快速测定方法。实验考察了浊度、氯化钡加入形态、摇动时间,静置时间等影响因素。结果表明,浊度在5~25 NTU时,其对硫酸盐的测定几乎没有影响。在实验最佳条件下,氯化钡的加入量为0.2 g,中速手摇40 s,静置时间5 min,所建立方法的线性范围为5~90 mg/L,相关系数R2=0.9998,方法的检出限为0.25 mg/L。加标回收率为94.00%~105.25%,相对标准偏差(RSD)为 0.19%~1.75%(n=5),方法便携、简单,适用于野外与浊度同步测定。
  • 煤炭燃烧会产生氮氧化物、二氧化硫和烟尘等污染物,对大气环境和人群健康造成危害[1]。2014年,国家发展改革委、环境保护部、国家能源局三部委印发《煤电节能减排升级与改造行动计划(2014—2020年)》。该计划旨在推进现役燃煤发电机组大气污染物达标排放环保改造,确保重点地区燃煤发电机组污染物排放达到燃气轮机机组排放限值[2],即排放的NOx质量浓度低于50 mg·m−3、SO2质量浓度低于35 mg·m−3、PM质量浓度低于5 mg·m−3

    近年来,循环流化床(circulating fluidized bed, CFB)技术得到发展并广泛应用。该技术具有燃料适应性强、燃料循环利用率较高、NOx排放量低的优点[3]。 为满足燃煤机组NOx排放限值,国内多家电厂对CFB机组开展了选择性非催化还原(selective non-catalytic reduction, SNCR)和选择性催化还原(selective non-catalytic reduction, SCR)联合脱硝技术改造。为满足NOx排放要求,河北省某330 MW循环流化床机组在原有低氮燃烧器+SNCR脱硝基础上,增设单层SCR催化剂,达到NOx排放低于50 mg·m−3的目标,且改造后还原剂使用量低于改造前,同时锅炉效率基本不受影响,实现了SNCR与SCR脱硝技术良好耦合[4]。邓志鹏等[5]采用SNCR/SCR联合脱硝技术对某220 t·h−1循环流化床锅炉进行改造,改造后机组可达到50 mg·m−3的排放标准,氨逃逸也控制在3×10−6以内。然而,SNCR/SCR联合脱硝系统存在入口NOx测量滞后性大、准确性差、系统非线性强[6],以及出口浓度测量值对于入口喷氨量反应迟等问题,导致现有控制系统难以精准控制喷氨量[7]。喷氨量过少会导致出口NOx质量浓度超出排放限制;喷氨量过多会出现氨逃逸并生成硫酸盐导致空预器、催化剂严重堵塞,对设备安全造成影响[8]。为保证出口烟气中NOx质量浓度的达标、降低氨逃逸量、提高脱硝系统运行的安全性和经济性,亟需研究入口NOx质量浓度滞后修正与喷氨量精准控制的方法。

    在入口NOx质量浓度滞后修正方面,软测量作为一种间接测量技术发展迅速。孙璐培[9]利用最小二乘支持向量机(least square support vector machine, LSSVM)建立了多尺度分析的NOx排放软测量模型;ZHAI等[10]在考虑系统内各参数的延迟关系的基础上,采用自适应LSSVM模型实现入口NOx质量浓度的预测;TAN等[11]采用长短期记忆神经网络,搭建了电厂NOx质量浓度预测模型,通过敏感性方法分析影响NOx质量浓度变化的因素,但尚未摸清变工况下入口处NOx的快速变化情况。在喷氨量控制方面,石铙桥[12]研究了通过电厂历史运行数据辨识状态空间矩阵,实现SNCR脱硝系统喷氨量控制,但并未考虑入口NOx变化对系统的影响。刘博文[13]建立了带入口软测量的多模型预测控制器,但入口软测量模型并未与控制系统很好地结合起来。

    本研究针对某CFB型机组的SNCR/SCR联合脱硝系统入口NOx质量浓度表计测量滞后,对锅炉总给煤量的典型历史运行工况进行数据聚类,建立了适应锅炉变工况下的全局LSTM神经网络预测模型,对入口NOx质量浓度进行滞后修正。在此基础上,提出基于入口NOx质量浓度修正的多模型预测控制策略,并进行现场工程应用验证,以期平稳控制脱硝系统出口的NOx质量浓度,减少氨逃逸,使脱硝系统运行更加经济、安全。

    本文研究对象为一台燃煤循环流化床锅炉,供应的煤种煤质较为稳定,满负荷下蒸发量为220 t·h−1,采用SNCR与SCR耦合的脱硝系统。还原剂采用液氨,经过液氨蒸发装置蒸发后喷入炉内,与烟气中NOx进行还原反应,从而达到脱硝的目的。循环流化床锅炉结构如图1所示,建模所采用的主要参数如表1所示。

    图 1  CFB锅炉结构示意图
    Figure 1.  Diagram of the CFB boiler
    表 1  入口NOx质量浓度测量修正模型输入特征
    Table 1.  Parameters of NOx mass concentration
    参数名称单位测点个数
    磨煤机瞬时给煤量t·h−14
    一次风体积流量m3·h−12
    二次风体积流量m3·h−12
    沸下温度4
    炉膛出口烟气温度2
    喷氨量体积流量L·h−11
    脱硝入口NOx质量浓度mg·m−31
    烟气含氧量%1
    催化剂入口烟气温度2
    脱硝出口NOx质量浓度mg·m−31
    脱硝出口氨逃逸质量浓度mg·m−31
     | Show Table
    DownLoad: CSV

    建立模型所需的数据由电厂信息(Plant Information, PI)系统采集。采样间隔5 s,采样周期20天,包含低、中、高多个负荷段,升、降、平稳负荷多种运行工况,数据一定程度上可覆盖电厂运行典型工况特征。部分现场数据如图2所示。

    图 2  部分现场运行数据
    Figure 2.  Partial field operation data
    注:图中横坐标每步的采样周期为5 s。

    CFB锅炉脱硝系统入口NOx质量浓度通常由污染物排放连续监测系统(continuous emission monitoring system, CEMS)检测。从炉中抽气至就地分析腔中,通过CEMS分析烟气污染物成分信息。由于在抽气过程中,存在较长的抽气管路,再加上入口仪表分析反应时长,因此该系统滞后性较强,需要进行入口NOx质量浓度的滞后修正,再作为喷氨量控制的前馈信号,以提高系统在变工况下的响应速度。分析滞后时间的方法通常有计算法和信号分析法[14]。本研究采用信号分析方法,通过分析吹扫信号结束信号与NOx质量浓度测量值回升的时间差,得到CEMS测量滞后时间约为72 s(图3)。

    图 3  入口NOx测量CEMS滞后时间分析
    Figure 3.  CEMS lag time analysis for inlet NOx mass concentration
    注:图中横坐标每步的采样周期为1 s。

    由于脱硝系统具有很强的非线性特征[15],而动态矩阵的预测模型采用阶跃响应线性叠加的方式,仅通过一个动态矩阵模型去预测系统在整个工况区间上的响应较为困难。因此,本研究通过核密度估计方法确定系统运行的若干典型工况,并针对多个典型工况进行建模,以提高控制精度。核密度估计方法如文献[16]所述,分析对象为可代表CFB锅炉运行特征的瞬时总给煤量。对20 d总给煤量的采样数据进行核密度估计,结果如图4所示。11.8、17.7和25.3 t·h−1为历史运行工况中瞬时总给煤量核密度统计的3个概率密度极大值点,可代表此台锅炉运行的3个典型工况。后续入口NOx质量浓度预测模型与多模型控制器模型均建立在这3个典型工况点上。

    图 4  基于核密度分析的给煤量典型运行工况
    Figure 4.  Analysis of typical operation conditions of coal feed based on kernel density estimation
    注:图中纵坐标数值代表相应总给煤量工况在总样本数据中出现的频率,3个标注点为概率密度曲线的极大值点,作为3个典型工况段划分的参考中心点。

    有学者研究了脱硝系统入口NOx质量浓度建模的方法,包括机理建模[17-18]、CFD建模[19-20]和机器学习[11, 21-22]等。本研究采用长短期记忆(long short-term memory, LSTM)神经网络,预测未来70 s的脱硝入口NOx质量浓度与CEMS当前测量浓度值的差值。该方法优势有2点:一是可在神经网路训练过程中避免当前测量值作为输入值时权重占比过大的影响;二是可避免因CEMS仪表吹扫时仪表测量值缺失带来的影响。

    以总给煤量11.8、17.7和25.3 t·h−1为聚类中心,对历史数据进行欧式距离聚类,得到3个数据集,并分别采用LSTM进行训练,欧氏距离公式见式(1)。

    d(x,y)=ni=1(xiyi)2 (1)

    式中:x、y分别表示2个样本点数据;d表示欧氏距离;n表示样本数量。

    LSTM网络训练数据采样间隔为20 s。采用2个隐藏层结构,回看时间步长(look-back timesteps)为24步,预测时间步长(prediction timesteps)为4步,训练数据与测试数据比例为0.8:0.2。为验证LSTM神经网络预测效果,与几种主流的机器学习预测方法的结果进行了对比,(表2)。LSTM在RMSE指标及相关性指标(R squared, R2)上结果均优于其他模型,且满足作为控制前馈的要求。

    表 2  不同模型在测试集上预测效果对比
    Table 2.  Comparison of prediction effects of different models on test datasets
    模型名称RMSE/(mg·m−3)R2/%
    LSTM3.5389
    ANN17.1140
    RFR17.0640
     | Show Table
    DownLoad: CSV

    由于传统控制手段控制的脱硝系统在工况波动较大情况下时,会出现喷氨响应滞后、出口NOx质量浓度波动较大的问题,控制品质难以得到保证,故本研究基于上述入口NOx质量浓度测量修正为前馈的多模型预测控制(multi-model predict control, MMPC)策略,结果如图5所示。基于Simulink开发了脱硝系统仿真,并与无入口浓度修正的多模型预测控制及原有控制策略效果进行对比。

    图 5  基于入口NOx质量浓度修正的多模型预测控制策略示意图
    Figure 5.  Schematic diagram of multi-model predictive control strategy based on modification of inlet NO x massconcentration

    动态矩阵模型预测控制(dynamic matrix control, DMC)为模型预测控制的一种,主要分为模型预测、滚动优化和反馈校正3个部分[23]。其中,模型预测采用阶跃响应模型,可用一阶惯性系统模型(式(2))。

    Y(s)=mi=1Gi(s)·Xi(s)=mi=1(KpiTpis+1eTdis)·Xi(s) (2)

    式中:Kp代表比例环节,Tp代表响应环节,Td代表纯滞后环节。采用动态惯性权重[24]的改进型粒子群寻优算法(improved particle swarm optimization, IPSO),寻找在11.8、17.7和25.3 t·h−1这3种典型工况下的脱硝系统预测模型。动态惯性权重调整后的公式为式(3)。

    w=wmaxR(wmaxwmin)Rmax (3)

    式中:w为惯性权重;R为当前迭代次数;Rmax为最大迭代次数。

    各参数辨识结果及模型预测效果分别如表3图6所示。这表明在各典型工况段上,预测模型均有较好的拟合效果,可满足系统仿真要求。

    表 3  各典型工况段模型参数IPSO算法辨识结果
    Table 3.  Identification results by IPSO algorithm for model parameters under typical operation conditionsons
    给煤量/(t·h−1)辨识参数喷氨量模型参数烟气流量模型参数入口NOx模型参数给煤量模型参数均方误差/(mg m−3)
    11.8kp-3.66e-014.04e-051.48e-015.17e-012.28
    Tp2.99e+003.97e+002.68e+002.23e+00
    Td2.02e+002.00e+003.09e+001.00e+00
    17.7kp-2.40e-016.66e-051.21e-015.22e-011.89
    Tp1.33e+003.13e+003.67e+002.33e+00
    Td1.91e+004.10e+003.43e+001.13e+00
    25.3kp-2.13e-013.96e-041.24e-019.04e-012.08
    Tp1.33e+004.79e-013.72e+002.73e+00
    Td2.02e+004.10e+003.10e+001.00e+00
     | Show Table
    DownLoad: CSV
    图 6  各典型工况段上模型辨识效果
    Figure 6.  Model identification effects on typical operation conditions
    注:图中横坐标每步的采样周期为5 s。

    基于Simulink仿真软件,采用上述辨识模型的参数结果,搭建了脱硝系统仿真平台,仿真系统如图7所示。该系统分为4个部分,电厂运行数据部分为从现场采集的总风量、入口NOx质量浓度、总给煤量数据按采样周期5 s输入仿真系统;脱硝系统仿真部分为基于脉冲响应模型的脱硝系统仿真模块,可计算出实际出口NOx质量浓度;DMC控制器部分为经典的DMC控制器,红色部分则是入口NOx质量浓度测量修正模块,给入上述LSTM神经网络所预测出的入口NOx质量浓度差值。

    图 7  基于Simulink软件的脱硝系统仿真框图
    Figure 7.  Diagram of denitration system based on Simulink software

    在控制出口NOx质量浓度为30 mg·m−3的目标下,采用实际现场运行数据进行脱硝系统喷氨量控制仿真,仿真时间步长为800步。控制效果对比如图8所示。当仿真时间步长为100~ 200步时,原有控制在入口NOx质量浓度下降时喷氨量响应速率较慢,导致出口NOx质量浓度远离目标值,而MMPC控制器反应迅速。在仿真时间为400步和570步时,入口NOx质量浓度变化幅度较大,MMPC控制平稳性优于原有控制,而带入口NOx质量浓度修正的MMPC控制器波动幅度更小。将上述控制结果绘成频率折线图(图9)。结果表明,有入口浓度修正的MMPC控制平稳度优于普通MMPC控制,更优于原有控制。原有控制、MMPC与入口修正MMPC出口NOx质量浓度标准差分别为1.617、0.955、与0.584 mg·m−3。较原有控制,MMPC控制波动减少40.6%,入口修正MMPC控制波动减少63.7%。

    图 8  不同控制策略喷氨量控制效果仿真对比
    Figure 8.  Simulation comparion of ammonia injection control effect with different control strategies
    注:图中横坐标每步的采样周期为5 s。
    图 9  不同控制策略控制品质对比
    Figure 9.  Control quality comparison of different control strategies

    控制出口NOx质量浓度平稳的目的有2点:一是尽量减少脱硝系统出口氨逃逸,降低出口氨腐蚀对设备造成破坏的风险;二是减少喷氨量,提高运行经济性。在该前提下,将出口NOx质量浓度设定值提高至40 mg·m−3,以观察系统响应。

    图10表明,前80步为目标值30~40 mg·m−3的过渡过程,在出口NOx质量浓度抬高至40 mg·m−3后便不存在太多超调过程即往回回落,并稳定在40 mg·m−3附近。在480步入口NOx质量浓度有较大变化时,不带入口NOx质量浓度修正的MMPC控制波动范围为37.5 ~ 43 mg·m−3,而带入口NOx质量浓度修正的MMPC控制波动范围为39 ~ 42 mg·m−3,范围更窄。在入口NOx质量浓度波动较大的情况下,带入口NOx质量浓度修正的MMPC控制出口NOx质量浓度稳定在40 mg·m−3左右,表现出良好的控制品质。

    图 10  出口NOx质量浓度40 mg·m-3目标值时控制效果对比
    Figure 10.  Control quality comparison on 40 mg·m-3 target of outlet NOx concentration
    注:图中横坐标每步的采样周期为5 s。

    为检验控制策略在实际应用中的效果,开发了与燃煤CFB机组现场生产环境兼容的脱硝控制系统,并在浙江嘉兴某热电厂开展了48 h的现场测试,期间经历了快速升、降负荷及高、中、低不同负荷的各种典型工况。现有控制系统部署在独立的网络系统中,电厂原有控制系统通过OPC交换机向现有控制系统传输数据,优化计算后的控制指令和相关数据再通过Modbus协议传输给DCS系统,实现智能控制。图11为现场部署的脱硝控制系统硬链接示意图。

    图 11  控制系统现场物理连接情况
    Figure 11.  Physical layer connection of control system on scene

    在脱硝入口NOx质量浓度修正方面,当风、煤等参数发生较大波动时,入口NOx质量浓度预测修正可提示预判变化趋势,作为前馈使喷氨量提前动作。图12表明,在第1 000 步和第2 500 步左右时,模型分别判断出较大的上升趋势和下降趋势。但在较为平稳工况下的修正效果仍有待改进,这是由于输入模型的关键参数煤质信息有缺失,且修正模型无法完全反应生成的细节变化、未考虑流场中NOx分布不匀等问题。

    图 12  现场脱硝入口NOx质量浓度修正效果
    Figure 12.  Correction of inlet NOx concentration on scene
    注:图中横坐标每步的采样周期为5 s。

    在脱硝系统出口NOx质量浓度控制方面,主要从2个方面进行验证:一是控制系统在机组快速升降负荷情况下的控制效果,检验控制的快速性、平稳性;二是检验在不同负荷段的控制效果,检验多模型策略的可行性和系统的鲁棒性。图13为快速升负荷下的控制效果对比,原有控制出口NOx波动范围为±21 mg·m−3,而入口修正-MMPC出口NOx波动范围为±6 mg·m−3。而且原有控制滞后,在出口NOx超过50 mg·m−3后才调大喷氨量,导致了喷氨过量,氨逃逸达到8 mg·m−3,而入口修正-MMPC喷氨量提前动作,将氨逃逸维持在了3 mg·m−3以内。图14为快速降负荷时控制效果的对比,原有控制的出口NOx波动达到了±12 mg·m−3,而入口修正-MMPC出口NOx波动控制在±5 mg·m−3内,故氨逃逸也较低。

    图 13  现场快速升负荷工况下控制效果对比
    Figure 13.  Comparison of control effects under the condition of rapid load increase on scene
    注:虚线表示现场实验过程中出口NOx质量浓度波动的上下限范围,波动范围越小证明控制品质越好。图中横坐标每步的采样周期为1 min。
    图 14  现场快速降负荷工况下控制效果对比
    Figure 14.  Comparison of control effects under the condition of rapid load decrease on scene
    注:虚线表示现场实验过程中出口NOx质量浓度波动的上下限范围,波动范围越小证明控制品质越好。图中横坐标每步的采样周期为1 min。

    为验证控制模型在全局工况下的鲁棒性,对高、中、低负荷工况下的控制效果进行对比(表4)。统计现场实验数据和历史数据在相应负荷段的1 h内,出口NOx质量浓度及氨逃逸的最大值、最小值和标准差统计量,用以表征控制效果好坏。在出口NOx质量浓度控制方面,在同样设定值35 mg·m−3的情况下,入口修正-MMPC控制在各工况段始终控制出口浓度低于40 mg·m−3,实现了较好地卡边控制。而原有控制波动较大,甚至有超标的风险。在氨逃逸控制方面,入口修正-MMPC控制氨逃逸最大值也小于原有控制水平,标准差上更是有巨大差距。这也说明入口修正-MMPC控制更为平稳,氨逃逸值波动较小,使脱硝系统的平稳性和经济性均有明显改善。

    表 4  不同负荷段工况下控制效果对比
    Table 4.  Comparison of control effects under different load segments
    锅炉蒸发量控制策略出口NOx质量浓度/(mg·m−3)氨逃逸的质量浓度/(mg·m−3)
    最大值最小值标准差最大值最小值标准差
    120 t·h−1入口修正-MMPC39.932.11.71.080.730.06
    120 t·h−1原有控制48.830.64.82.160.870.24
    150 t·h−1入口修正-MMPC38.029.52.20.950.590.07
    150 t·h−1原有控制54.921.08.715.380.775.10
    200 t·h−1入口修正-MMPC39.824.43.44.690.180.65
    200 t·h−1原有控制47.222.17.35.940.401.48
      注:最大值代表在相应控制策略下出现的波动最大值,最小值代表在相应控制策略下出现的波动最小值。
     | Show Table
    DownLoad: CSV

    综上所述,入口修正-MMPC策略在升降负荷工况下响应较快,出口NOx质量浓度控制平稳,氨逃逸较低。由于多模型的应用建立了准确的全局预测模型,在高中低典型工况上预测模型均有较高的准确性、鲁棒性好,因此可满足长期运行要求。相较于原有控制,入口修正-MMPC可有效降低出口NOx质量浓度的波动,减少过量喷氨次数,降低氨逃逸,节约氨水使用量,从而提升脱硝系统运行经济性、安全性。

    1)由于不同工况聚类的长短期记忆神经网络模型的准确度要高于常见的回归模型人工神经网络和随机森林回归,故在脱硝入口NOx质量浓度修正方面,可证明长短期记忆神经网络在处理时间序列数据上的优势。模型在测试集上的均方根误差为3.53 mg·m−3,相关性系数为89%。

    2)在喷氨量控制方面,采用多模型预测控制策略,可克服脱硝系统非线性特性强的问题,增强控制系统在不同工况下的鲁棒性。采用入口浓度修正的多模型预测控制策略,可使控制系统在入口NOx质量浓度发生突变时,喷氨量提前动作响应,相比没有入口修正的多模型预测控制策略,出口NOx质量浓度控制更平稳。

    3)现场应用表明,脱硝系统采用入口浓度修正的多模型预测控制策略后,在变工况和高、中、低多负荷区间条件下,出口NOx质量浓度波动明显降低。这表明多模型预测控制策略下系统的运行优于原有控制策略,该策略亦可提高脱硝系统的经济性。

  • [1] 宋柳霆,刘丛强,王中良,等. 贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研究. 地球化学,2008,36(6):556-564 Song Liuting,Liu Congqiang, Wang Zhongliang, et al. Stable sulfur isotopic geochemistry to investigate potential sources and cycling behavior of sulfate in Lake Hongfeng,Guizhou Province. Geochimica, 2008,36(6):556-564(in Chinese)
    [2] 刘波. 硫酸盐的检测方法. 职业与健康,2007,23(19):1745-1747
    [3] 宋金如,刘淑娟,朱霞萍. 测定水中硫酸根方法的概述.华东地质学院学报,2002,25(2):154-158 Song Jinru,Liu Shujuan,Zhu Xiaping. Review of determination of sulfate radical in water. Journal of East China Geological Institute, 2002,25(2):154-158(in Chinese)
    [4] 林杰.快速、精确测定硫酸根含量新方法.纯碱工业,2004,(4):28-29 Lin Jie. A fast and accurate approach to determinate SO42- content. Soda Industry, 2004,(4):28-29(in Chinese)
    [5] Simkin S. M.,Lewis D. N.,Weathers K. C.,et al. Determination of sulfate, nitrate, and chloride in through fall using ion-exchange resins. Water, Air, and Soil Pollution, 2004,153(1-4):343-354
    [6] 林木松,傅强,张宏亮. 应用红外光谱法快速测定粉煤灰中硫酸盐.理化检验-化学分册, 2004,40(6):345-346 Lin musong,Fu Qiang,Zhang Hongliang. Direct combustion Ir-spectrometric determination of sulfur in powdered coal ASH. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2004,40(6):345-346(in Chinese)
    [7] 胡宝珍. 紫外分光光度法测定水中硫酸盐. 理化检验-化学分册,2006,42(9):768-775 Hu Baozhen. UV spectrophotometric determination of sulphate in water samples. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2006,42(9):768-775(in Chinese)
    [8] 姚永进,洪水皆. 荧光法测定微量硫酸盐的研究. 干旱环境监测,1992,16(1):10-28 Yao Yongjin,Hong Shuijie. Study on the determination of micro amounts of sulfate by fluorometry. Arid Environmental Monitoring, 1992,16(1):10-28(in Chinese)
    [9] 中华人民共和国卫生部. 生活饮用水卫生规范. 北京:中国标准出版社,2001
    [10] Kumar S. D., Maiti B., Mathur P.K. Determination of iodate and sulphate in iodized common salt by ion chromatography with conductivity detection.Talanta, 2001,53(4-5):701-705
    [11] Del Nozal M. J., Bemal J.L.,Diego J.C., et al. Determination of oxalate, sulfate and nitrate in honey and honeydew by ion-chromatography. J. Chromatog A, 2000,881(1-2):629-638
    [12] 王会存,施良,叶晓东. 硫酸钡比浊法测定水中硫酸盐方法的改进. 中国卫生检验杂志,2010,20(5):1250
    [13] 中国标准出版社第二编辑室. 水质标准汇编(下册). 北京:中国标准出版社,2005
    [14] 武汉大学.分析化学(第5版)(上册).北京:高等教育出版社,2006
    [15] 丁根娣,吴杰,许志遂.硫酸钡吸光比浊法测定机理的探讨.理化检验-化学分册,2001,37(3):111-112 Ding Gendi,Wu Jie,Xu Zhisui. On the mechanism of the turbidim etric determination of SO42- by the BaSO4 method. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2001,37(3):111-112(in Chinese)
    [16] 范建中,杨元斌. 白皂素乳化-氯化钡比浊法测定饮水中硫酸盐的应用. 中国卫生检验杂志,2002,12(1):74,22
    [17] 邵崇斌.概率论与数理统计. 北京: 中国林业出版社,2003
  • 加载中
计量
  • 文章访问数:  2236
  • HTML全文浏览数:  1322
  • PDF下载数:  1534
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-07-04
  • 刊出日期:  2013-04-09
薛秀玲, 李孟迪. 浊度仪法快速测定水体中硫酸盐含量[J]. 环境工程学报, 2013, 7(4): 1359-1362.
引用本文: 薛秀玲, 李孟迪. 浊度仪法快速测定水体中硫酸盐含量[J]. 环境工程学报, 2013, 7(4): 1359-1362.
Xue Xiuling, Li Mengdi. Rapid determination of sulfate in water by turbidimetry[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1359-1362.
Citation: Xue Xiuling, Li Mengdi. Rapid determination of sulfate in water by turbidimetry[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1359-1362.

浊度仪法快速测定水体中硫酸盐含量

  • 1. 华侨大学化工学院,厦门 361021
基金项目:

福建省厦门市科技计划项目(3502Z20103034)

中央高校基本科研业务费专项资金资助(JB-ZR1114)

摘要: 为了适应野外水质快速测定的要求,根据硫酸钡比浊法的方法原理,采用浊度仪测定浊度的方法,建立了水体中硫酸盐含量的快速测定方法。实验考察了浊度、氯化钡加入形态、摇动时间,静置时间等影响因素。结果表明,浊度在5~25 NTU时,其对硫酸盐的测定几乎没有影响。在实验最佳条件下,氯化钡的加入量为0.2 g,中速手摇40 s,静置时间5 min,所建立方法的线性范围为5~90 mg/L,相关系数R2=0.9998,方法的检出限为0.25 mg/L。加标回收率为94.00%~105.25%,相对标准偏差(RSD)为 0.19%~1.75%(n=5),方法便携、简单,适用于野外与浊度同步测定。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回