水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥

谢华明, 曾光明, 罗文连, 王川, 黄兢, 徐海音, 杨朝晖. 水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥[J]. 环境工程学报, 2013, 7(3): 1121-1127.
引用本文: 谢华明, 曾光明, 罗文连, 王川, 黄兢, 徐海音, 杨朝晖. 水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥[J]. 环境工程学报, 2013, 7(3): 1121-1127.
Xie Huaming, Zeng Guangming, Luo Wenlian, Wang Chuan, Huang Jing, Xu Haiyin, Yang Zhaohui. Stabilization/solidification of heavy metal contaminated sediment using cement, fly ash and DTCR[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1121-1127.
Citation: Xie Huaming, Zeng Guangming, Luo Wenlian, Wang Chuan, Huang Jing, Xu Haiyin, Yang Zhaohui. Stabilization/solidification of heavy metal contaminated sediment using cement, fly ash and DTCR[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1121-1127.

水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥

  • 基金项目:

    国家自然科学基金资助项目(30970105和51078131),国家"水体污染控制与治理"科技重大专项(2009ZX07212-001-02)

    长沙科技计划重点资助项目(K0802151-31)

  • 中图分类号: X705

Stabilization/solidification of heavy metal contaminated sediment using cement, fly ash and DTCR

  • Fund Project:
  • 摘要: 采用水泥、粉煤灰及有机硫稳定剂DTCR固化/稳定化处理重金属污染的底泥,考察固化体的抗压强度及重金属浸出毒性,确定了底泥固化/稳定化的最佳工艺条件。结果表明:仅用水泥固化/稳定化重金属污染底泥,固化体抗压强度随水泥用量的增加而上升,重金属浸出浓度则下降,当水泥∶干底泥质量比为0.6∶1.0时,固化体7 d抗压强度能达到0.99 MPa的标准值;进一步研究发现,水泥∶粉煤灰∶干底泥质量比为0.54∶0.06∶1.0时,重金属浸出浓度有所上升,但7 d及28 d抗压强度仍能分别达到1.2 MPa和2.8 MPa;加入DTCR后,当水泥∶粉煤灰∶DTCR∶干底泥质量比为0.54∶0.06∶0.012∶1.0时,固化体7 d及28 d抗压强度分别为1.1 MPa和2.1 MPa,醋酸缓冲溶液法浸出的Cd、Pb、Zn和Cu浓度分别为0.102、0.189、0.180和0.032 mg/L。
  • [1] 窦佩琼,候方东,包晓风,等. 株洲市清水塘工业区地表水底泥重金属污染评价. 四川环境,2008,27(4): 74-78 Dou Peiqiong,Hou Fangdong,Bao Xiaofeng,et al. Evaluation of heavy metals pollution in bottom sediment of surface water in Qingshuitang District of Zhuzhou City. Sichuan Environment,2008,27(4):74-78 (in Chinese)
    [2] Gougar M. L. D., Scheetz B. Z., Roy D. M.Ettringite and C—S—H Portland cement phases for waste ion immobilization: A review.Waster Management,1996,16 (4):295-303
    [3] Peng Jianfeng, Song Yonghui, Yuan Peng,et al. The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials,2009,161(2/3):633-640
    [4] 贾晓蕾,张盼月,曾光明. 粉煤灰掺用量对水泥固化/稳定重金属污染底泥的影响. 安全与环境学报,2010,10(5):50-54 Jia Xiaolei, Zhang Panyue, Zeng Guangming.Effect of coalfly ash addition on cement stabi1ization/solidification of heavy metal contaminated sediments. Journal of Safety and Environment,2010,10 (5): 50-54 (in Chinese)
    [5] Poon C. S., Qiao X. C., Lin Z. S. Pozzolanic properties of reject fly ash in blended cement pastes. Cement and Concrete Research, 2003,33(11):1857-1865
    [6] 高波,刘淑玲,王敏,等. 危险废物水泥固化工艺的工程设计与探讨. 环境工程,2010,28(3):95-98 Gao Bo, Liu Shuling,Wang Min,et al. Engineering design and discussion on cement solidification process of hazardous waste. Environmental Engineering,2010,28(3):95-98(in Chinese)
    [7] 蒋建国,王伟,李国鼎,等. 重金属螯合剂处理焚烧飞灰的稳定化技术研究. 环境科学,1999,20(3):13-17 Jiang Jianguo,Wang Wei,Li Guoding,et al. Experimental study on the chemical stabilization technology in treating with fly ash using heavy metal chelating agent. Environmental Science,1999,20(3):13-17(in Chinese)
    [8] Sukandar, Tri Padmi, Masaru Tanaka,et al. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation. Waste Management,2009,29(7):2065-2070
    [9] 李倩倩,李义久,相波. 高分子螯合剂在重金属废水处理中的应用. 工业水处理,2004,24(7):5-8 Li Qianqian, Li Yijiu, Xiang Bo.Application of the macromolecule-chelating agent to the treatment of heavy metal wastewater. Industrial Water Treatment,2004,24(7):5-8(in Chinese)
    [10] Zhang X. Y., Wang Q. C., Zhang S. Q., et al. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement. Journal of Hazardous Materials, 2009,168(2/3):1575-1580
    [11] Mangialardi T.,Paolini A. E.,Polettini A.,et al. Optimization of the solidification/stabilization process of MSW fly ash in cementations matrices. Journal of Hazardous Materials,1999,B70(1/2):53-70
    [12] 王建华,肖佳,陈雷,等. 粉煤灰对水泥水化与强度的影响. 粉煤灰综合利用, 2009(5):34-36 Wang jianhua,Xiao jia,Chen lei,et al. Influence on cement hydration and strength of fly ash. Fly Ash Comprehensive Utilization, 2009(5):34-36(in Chinese)
    [13] 乔秀臣,林宗寿,寇世聪,等. 废弃粗粉煤灰-水泥系统固化重金属废弃物的探讨. 武汉理工大学学报,2005,27(3):23-26 Qiao Xiucheng, Lin Zongshou, Kou Shicong, et al. Study of solidification and stabilization of heavy metals using reject fly ash blended cement pastes. Journal of Wuhan University of Technology,2005,27(3):23-26 (in Chinese)
    [14] 范昭平,朱伟,张春雷. 有机质含量对淤泥固化效果影响的试验研究. 岩土力学,2005,26(8):1327-1330 Fan Zhaoping,Zhu Wei,Zhang Chunlei. Experimental study on influence of organic matter content on solidified dredging. Rock and Soil Mechanics,2005,26(8):1327-1330 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2364
  • HTML全文浏览数:  1239
  • PDF下载数:  1842
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-10
  • 刊出日期:  2013-03-18
谢华明, 曾光明, 罗文连, 王川, 黄兢, 徐海音, 杨朝晖. 水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥[J]. 环境工程学报, 2013, 7(3): 1121-1127.
引用本文: 谢华明, 曾光明, 罗文连, 王川, 黄兢, 徐海音, 杨朝晖. 水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥[J]. 环境工程学报, 2013, 7(3): 1121-1127.
Xie Huaming, Zeng Guangming, Luo Wenlian, Wang Chuan, Huang Jing, Xu Haiyin, Yang Zhaohui. Stabilization/solidification of heavy metal contaminated sediment using cement, fly ash and DTCR[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1121-1127.
Citation: Xie Huaming, Zeng Guangming, Luo Wenlian, Wang Chuan, Huang Jing, Xu Haiyin, Yang Zhaohui. Stabilization/solidification of heavy metal contaminated sediment using cement, fly ash and DTCR[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1121-1127.

水泥、粉煤灰及DTCR固化/稳定化重金属污染底泥

  • 1.  湖南大学环境科学与工程学院,长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学),长沙 410082
  • 3.  湖南华亿市政设计有限公司,长沙 410007
基金项目:

国家自然科学基金资助项目(30970105和51078131),国家"水体污染控制与治理"科技重大专项(2009ZX07212-001-02)

长沙科技计划重点资助项目(K0802151-31)

摘要: 采用水泥、粉煤灰及有机硫稳定剂DTCR固化/稳定化处理重金属污染的底泥,考察固化体的抗压强度及重金属浸出毒性,确定了底泥固化/稳定化的最佳工艺条件。结果表明:仅用水泥固化/稳定化重金属污染底泥,固化体抗压强度随水泥用量的增加而上升,重金属浸出浓度则下降,当水泥∶干底泥质量比为0.6∶1.0时,固化体7 d抗压强度能达到0.99 MPa的标准值;进一步研究发现,水泥∶粉煤灰∶干底泥质量比为0.54∶0.06∶1.0时,重金属浸出浓度有所上升,但7 d及28 d抗压强度仍能分别达到1.2 MPa和2.8 MPa;加入DTCR后,当水泥∶粉煤灰∶DTCR∶干底泥质量比为0.54∶0.06∶0.012∶1.0时,固化体7 d及28 d抗压强度分别为1.1 MPa和2.1 MPa,醋酸缓冲溶液法浸出的Cd、Pb、Zn和Cu浓度分别为0.102、0.189、0.180和0.032 mg/L。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回