电化学氧化法去除超高盐榨菜废水中的氨氮

渠光华, 张智, 郑海领. 电化学氧化法去除超高盐榨菜废水中的氨氮[J]. 环境工程学报, 2013, 7(3): 815-819.
引用本文: 渠光华, 张智, 郑海领. 电化学氧化法去除超高盐榨菜废水中的氨氮[J]. 环境工程学报, 2013, 7(3): 815-819.
Qu Guanghua, Zhang Zhi, Zheng Hailing. Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 815-819.
Citation: Qu Guanghua, Zhang Zhi, Zheng Hailing. Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 815-819.

电化学氧化法去除超高盐榨菜废水中的氨氮

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2008ZX07315-004)

  • 中图分类号: X703

Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation

  • Fund Project:
  • 摘要: 采用电化学氧化法去除超高盐榨菜废水中的氨氮,阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极,考察了电流密度、电解时间、极板间距、初始pH以及极水比对氨氮去除率的影响,并分析了电流密度对氨氮能耗和阳极效率的影响。结果表明,在初始氨氮浓度为472.73 mg/L,电流密度为156 mA/cm2,极板间距为1.5 cm,极水比为0.8 dm2/L,原水pH为4.3~5.0时,电解30 min和60 min时氨氮的去除率分别为89.75%和99.94%,电解30 min时,氨氮能耗最低为96 kWh/kg,阳极效率最高为8.47 g/(h·m2·A)。
  • [1] Fikret K. Empirical models for biological treatment of saline wastewater in rotating biodisc contactor. Process Biochemistry, 2002, 38 (3): 399-403
    [2] Kim W., Inge DB., Willy V. Oxygen-limited autotrophic nitrification-denitrification(OLAND)in a rotating biological contactor treating high-salinity wastewater. Water Research, 2005, 39 (18): 4512-4520
    [3] 周健,曾朝银,龙腾锐,等. 高盐高氮榨菜废水生物脱氮试验研究. 环境科学学报,2005,25(12): 1636-1640 Zhou Jian, Zeng Chaoyin, Long Tengrui, et al. Study on biological nitrogen removal in mustard tuber wastewater with high salinity and high nitrogen concentration. Acta Scientiae Circumstantiae, 2005, 25(12): 1636-1640(in Chinese)
    [4] Juang R.S., Wu C.Y. Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contract. Chemosphere, 2007, 66 (1): 191-198
    [5] Yang D., James D.E. Electrochemical oxidation for landfill leachate treatment. Waste Management, 2007, 27 (3): 380-388
    [6] Radha K.V., Sridevi V., Kalaivani K. Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technology, 2009, 100 (2): 987-990
    [7] Raju G.B., Karuppiah M.T., Latha S.S., et al. Electrochemical pretreatment of textile effluents and effect of electrode materials on the removal of organics. Desalination, 2009, 249 (1): 167-174
    [8] Chatzisymeon E., Dimou A., Mantzavinos D., et al. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. Journal of Hazardous Materials, 2009, 167 (1-3): 268-274
    [9] Un T.U., Altay U., Koparal A.S., et al. Complete treatment of olive mill wastewaters by electrooxidation. Chemical Engineering Journal, 2008, 139 (3): 445-452
    [10] Gosti M., Nicolas K., Psillakis E., et al. Electrochemical oxidation of olive oil mill wastewaters. Water Research, 2005, 39(17): 4177-4187
    [11] Szpyrkowicz L., Kaul S.N., Neti R.N., et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research, 2005, 39 (8): 1601-1613
    [12] Rao N.N., Somasekhar K.M., Kaul S.N., et al. Electrochemical oxidation of tannery wastewater. Env. Sci. Biotech., 2001, 76(11): 1124-1131
    [13] Zhu X.P., Ni J.R., Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Research, 2009, 43 (17): 4347-4355
    [14] Raghu S., Lee CW., Chellammal S., et al. Evaluation of electrochemical oxidation techniques for degradation of dye effluents—A comparative approach. Journal of Hazardous Materials, 2009, 171 (1-3): 748-754
    [15] Panizza M., Cerisola G. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. Journal of Hazardous Materials, 2008, 153 (1-2): 83-88
    [16] 林海波,费建民,张恒彬,等. 电催化氧化法处理化肥厂外排废水的研究. 工业水处理,2004,24(4): 36-38 Lin haibo, Fei jianmin, Zhang hengbin, et al. Investigation on electrocatalytic oxidation treatment of the effluent in a fertilizer plant. Industrial Water Treatment, 2004,24(4): 36-38(in Chinese)
    [17] 徐丽丽,施汉昌,陈金銮. Ti/RuO2-TiO2-IrO2-SnO2电极电解氧化含氨氮废. 环境科学,2007,28 (9): 2009-2013 Xu Lili, Shi Hanchang, Chen Jinluan. Electrochemical oxidation of ammonia nitrogen wastewater using Ti/RuO2-TiO2-IrO2-SnO2 electrode. Environmental Science, 2007,28 (9): 2009-2013(in Chinese)
    [18] 鲁剑,张勇,吴蒙蒙,等. 电化学氧化法处理高氨氮废水的试验研究. 安全与环境工程,2010,17(2): 51-53 Lu Jian, Zhang Yong, Wu Mengmeng, et al. Experimental study on the electrochemical oxidation of the wastewater with high ammonia nitrogen. Safety and Environmental Engineering, 2010, 17(2): 51-53(in Chinese)
    [19] 国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社,2002.279-281
  • 加载中
计量
  • 文章访问数:  3384
  • HTML全文浏览数:  1788
  • PDF下载数:  1384
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-12-30
  • 刊出日期:  2013-03-18
渠光华, 张智, 郑海领. 电化学氧化法去除超高盐榨菜废水中的氨氮[J]. 环境工程学报, 2013, 7(3): 815-819.
引用本文: 渠光华, 张智, 郑海领. 电化学氧化法去除超高盐榨菜废水中的氨氮[J]. 环境工程学报, 2013, 7(3): 815-819.
Qu Guanghua, Zhang Zhi, Zheng Hailing. Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 815-819.
Citation: Qu Guanghua, Zhang Zhi, Zheng Hailing. Removal of ammonia nitrogen from hypersaline pickle wastewater by electrochemical oxidation[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 815-819.

电化学氧化法去除超高盐榨菜废水中的氨氮

  • 1.  重庆大学三峡库区生态环境教育部重点实验室,重庆 400045
  • 2.  贵州大学矿业学院,贵阳 550025
  • 3.  中国石油工程设计有限公司西南分公司,成都 610041
基金项目:

国家"水体污染控制与治理"科技重大专项(2008ZX07315-004)

摘要: 采用电化学氧化法去除超高盐榨菜废水中的氨氮,阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极,考察了电流密度、电解时间、极板间距、初始pH以及极水比对氨氮去除率的影响,并分析了电流密度对氨氮能耗和阳极效率的影响。结果表明,在初始氨氮浓度为472.73 mg/L,电流密度为156 mA/cm2,极板间距为1.5 cm,极水比为0.8 dm2/L,原水pH为4.3~5.0时,电解30 min和60 min时氨氮的去除率分别为89.75%和99.94%,电解30 min时,氨氮能耗最低为96 kWh/kg,阳极效率最高为8.47 g/(h·m2·A)。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回